首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This paper reviews the principal results of direct measurements of the plasma and magnetic field by spacecraft close to the Earth (within the heliocentric distance range 0.7–1.5 AU). The paper gives an interpretation of the results for periods of decrease, minimum and increase of the solar activity. The following problems are discussed: the interplanetary plasma (chemical composition, density, solar wind flow speed, temperature, temporal and spatial variation of these parameters), the interplanetary magnetic field (intensity, direction, fluctuations and its origin), some derived parameters characterizing the physical condition of the interplanetary medium; the quasi-stationary sector structure and its connection with solar and terrestrial phenomena; the magnetohydrodynamic discontinuities in the interplanetary medium (tangential discontinuities and collisionless shock waves); the solar magnetoplasma interaction with the geomagnetic field (the collisionless bow shock wave, the magnetosheath, the magnetopause, the Earth's magnetic tail, the internal magnetosphere characteristics), the connection between the geomagnetic activity and the interplanetary medium and magnetosphere parameters; peculiarities in behaviour of the interplanetary medium and magnetosphere during geomagnetic storms; energetic aspects of the geomagnetic storms.  相似文献   

2.
Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell’s equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm’s law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms.  相似文献   

3.
This review considers the theory of the magnetic field line reconnection and its application to the problem of the interaction between the solar wind and the Earth's magnetosphere. In particular, we discuss the reconnection models by Sonnerup and by Petschek (for both incompressible and compressible plasmas, for the asymmetric and nonsteady-state cases), the magnetic field annihilation model by Parker; Syrovatsky's model of the current sheet; and Birn's and Schindler's solution for the plasma sheet structure. A review of laboratory and numerical modelling experiments is given.Results concerning the field line reconnection, combined with the peculiarities of the MHD flow, were used in investigating the solar wind flow around the magnetosphere. We found that in the presence of a frozen-in magnetic field, the flow differs significantly from that in a pure gas dynamic case; in particular, at the subsolar. part of the magnetopause a stagnation line appears (i.e., a line along which the stream lines are branching) instead of a stagnation point. The length and location of the stagnation line determine the character of the interaction of the solar wind with the Earth's magnetosphere. We have developed the theory of that interaction for a steady-state case, and compare the results of the calculations with the experimental data.In the last section of the review, we propose a qualitative model of the solar wind — the Earth's magnetosphere interaction in the nonsteady-state case on the basis of the solution of the problem of the spontaneous magnetic field line reconnection.  相似文献   

4.
The First two Years of Image   总被引:1,自引:0,他引:1  
Burch  J.L. 《Space Science Reviews》2003,109(1-4):1-24
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) is the first satellite mission that is dedicated to imaging the Earth's magnetosphere. Using advanced multispectral imaging techniques along with omnidirectional radio sounding, IMAGE has provided the first glimpses into the global structure and behavior of plasmas in the inner magnetosphere. Scientific results from the two-year prime mission include the confirmation of the theory of plasmaspheric tails and the discovery of several new and unpredicted features of the plasmasphere. Neutral-atom imaging has shown how the ring current develops during magnetic storms and how ionospheric ions are injected into the ring current during substorms. The first global imaging of proton auroras has allowed the identification of the ionospheric footprint of the polar cusp and its response to changes in the interplanetary magnetic field. Detached subauroral proton arcs have been found to appear in the afternoon sector following south-north and east-west rotations of the IMF. Low-energy neutral atom imaging has shown global-scale ionospheric outflow to be an immediate response to solar-wind pressure pulses. Such imaging has also provided the first measurements of solar wind and interstellar neutral atoms from inside the magnetosphere. Radio sounding has revealed the internal structure of the plasmasphere and identified plasma cavities as the source of kilometric continuum radiation. These and numerous other scientific results now set the stage for the extended mission of IMAGE in which the imaging perspective will change markedly owing to orbital evolution while the magnetospheric environment undergoes a transition from solar maximum toward solar minimum.  相似文献   

5.
Echim  M.M.  Lemaire  J.F. 《Space Science Reviews》2000,92(3-4):565-601
Plasma interaction at the interface between the magnetosheath and magnetosphere has been extensively studied during recent years. As a consequence various theoretical models have emerged. The impulsive penetration mechanism initially proposed by Lemaire and Roth as an alternative approach to the steady state reconnection, is a non-stationary model describing the processes which take place when a 3-D solar wind plasma irregularity interacts with the outer regions of the Earth's magnetosphere. In this paper we are reviewing the main features of the impulsive penetration mechanism and the role of the electric field in driving impulsive events. An alternative point of view and the controversy it has raised are discussed. We also review the numerical codes developed to simulate the impulsive transport of plasma across the magnetopause. They have illustrated the relationship between the magnetic field distribution and the convection of solar-wind plasma inside the magnetosphere and brought into perspective non-stationary phenomena (like instabilities and waves) which were not explicitly integrated in the early models of impulsive penetration. Numerical simulations devoted to these processes cover a broad range of approximations, from ideal MHD to hybrid and kinetic codes. The results show the limitation of these theories in describing the full range of phenomena observed at the magnetopause and magnetospheric boundary layers.  相似文献   

6.
This paper summarizes space probe observations relevant to the determination of the large-scale, three-dimensional structure of the solar wind and its solar cycle variations. Observations between 0.6 and 5 AU reveal very little change in the average solar-wind velocity, but a pronounced decrease in the spread of velocities about the average. The velocity changes may be accompanied by a transfer of energy from the electrons to the protons. The mass flux falls off approximately as the inverse square of distance as expected for spherically symmetric flow. Measurements of the interplanetary magnetic field show that the spiral angle is well defined over this entire range of distances, but there is some evidence that the spiral may wind up more slowly with distance from the Sun than predicted by Parker's model. The variances or noise in the field and plasma have also been measured as a function of radial distance.During the rising portion of the solar-activity cycle, the solar-wind velocity showed a pronounced positive correlation with solar latitude over the range ±7°. Several other plasma parameters which have been found generally to correlate (or anticorrelate) with velocity also showed a latitude variation; these parameters include the density, percent helium, and azimuthal flow direction. The average polarity and the north-south component of the magnetic field depend on the solar hemisphere in which the measurements are made.Dependence on the phase of the solar-activity cycle can be found in the data on the number of high speed streams, the proton density, the percent helium, and the magnetic-field strength and polarity.  相似文献   

7.
Convection is the most fundamental process in understanding the structure of geospace and disturbances observed in the magnetosphere–ionosphere (M–I) system. In this paper, a self-consistent configuration of the global convection system is considered under the real topology as a compound system. Investigations are made based on the M–I coupling scheme by analyzing numerical results obtained from magnetohydrodynamic (MHD) simulations which guarantee the self-consistency in the whole system under the Bv (magnetic field and velocity) paradigm. It is emphasized in the M–I coupling scheme that convection and field-aligned current (FAC) are different aspects of same physical process characterizing the open magnetosphere. Special attention is given in this paper to the energy supplying (dynamo) process that drives the FAC system. In the convection system, the dynamo must be constructed from shear motion together with plasma population regimes to steadily drive the convection. Convection patterns observed in the ionosphere are also the manifestation of achievement in global self-consistency. A primary approach to apply these concepts to the study of geospace is to consider how the M–I system adjusts the relative motion between the compressible magnetosphere and the incompressible ionosphere when responding to given solar-wind conditions. The above principle is also applicable for the study of disturbance phenomena such as the substorm as well as for the study of apparently unique processes such as the flux transfer event (FTE), the sudden commencement (SC), and the theta aurora. Finally, an attempt is made to understand the substorm as the extension of enhanced convection under the southward interplanetary magnetic field (IMF) condition.  相似文献   

8.
The magnetotail and substorms   总被引:5,自引:0,他引:5  
The tail plays a very active and important role in substorms. Magnetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary of the tail flares more, the field strength in the tail increases, and the currents strengthen and move closer to the Earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. At the onset of the expansion phase, the stored magnetic flux is returned from the tail and energy is deposited in the magnetosphere and ionosphere. During the expansion phase of isolated substorms, the flaring angle and the lobe field strength decrease, the plasma sheet thickens and more magnetic flux crosses the neutral sheet.In this review, we discuss the experimental evidence for these processes and present a phenomenological or qualitative model of the substorm sequence. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet. In order to remove the oversupply of magnetic flux in the tail, a neutral point forms in the near earth portion of the tail. If the new reconnection rate exceeds the dayside merging rate, then an isolated substorm results. However, a situation can occur in which dayside merging and tail reconnection are in equilibrium. The observed polar cap electric field and its correlation with the interplanetary magnetic field is found to be in accord with open magnetospheric models.  相似文献   

9.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
In this review the present state of our knowledge on the properties of heavy ions in low energy cosmic rays measured in the Skylab mission and in other spacecrafts is summarised and the possible mechanisms of their origin are discussed. A brief review of the general features of the galactic and solar cosmic rays is given in order to understand the special features of the low energy heavy ions of cosmic rays. The results of the cosmic ray experiment in the Skylab show that in the low energy interval of 8–30 MeV/N, the abundances of oxygen, nitrogen, and neon ions, relative to carbon are enhanced by a factor of 5 to 2 as compared to high energy cosmic rays; while Mg, Si, S, and A are depleted. In 50–150 MeV/N energy interval the abundance of nuclei of Ca-Cr relative to iron-group (Z = 25–28) is found to be highly enhanced, as compared to high energy cosmic rays. Furthermore the observations of the energy spectra of O, N, and Ne ions and their fairly large fluences in the energy interval of 8–30 MeV/N below the geomagnetic cut off energy of 50 MeV/N for fully stripped nuclei at the Skylab orbit indicate that these heavy ions are probably in partly ionised states. Thus, it is found that the Skylab results represent a new type of heavy ion population of low energy cosmic rays below 50 MeV/N, in the near Earth space and their properties are distinctly different from those of high energy cosmic rays and are similar to those of the anomalous component in the interplanetary space. The available data from the Skylab can be understood at present on the hypothesis that low energy interplanetary cosmic ray ions of oxygen etc. occur in partly ionised state such as O+1,O+2, etc. and these reach the inner magnetosphere at high latitudes where stripping process occurs near mirror points and this leads to temporarily trapped ions such as O+3, O+4, etc. It is noted that the origin of these low energy heavy cosmic ray ions in the magnetosphere and in interplanetary space is not yet fully understood and new type of sources or processes are responsible for their origin and these need further studies.  相似文献   

11.
Embedded in a large mass density and strong interplanetary magnetic field solar wind environment and equipped with a magnetic field of minor strength, planet Mercury exhibits a small magnetosphere vulnerable to severe solar wind buffeting. This causes large variations in the size of the magnetosphere and its associated currents. External fields are of far more importance than in the terrestrial case and of a size comparable to any internal, dynamo-generated field. Induction effects in the planetary interior, dominated by its huge core, are thought to play a much more prominent role in the Hermean magnetosphere compared to any of its companions. Furthermore, the external fields may cause planetary dynamo amplification much as discussed for the Galilean moons Io and Ganymede, but with the ambient field generated by the dynamo and its magnetic field-solar wind interaction.  相似文献   

12.
Recent research into the effects of the interplanetary magnetic field (IMF) on the Earth's auroral oval and plasmapause are reviewed. While the IMF sector structure has been known for some time to produce asymmetries in polar-cap convection, recent work has shown these effects to extend into the dayside auroral oval. A restricted region of local times referred to as the convection throat is found to move to either side of the noon meridian in response to changes in the IMF B y component.The question of the entry of solar-wind plasma into the magnetosphere continues to be a prime area of research. While it is generally felt that magnetic merging must play some significant role, evidence continues to mount that it does not occur at the subsolar magnetopause, as previously supposed, and that other driving forces for antisunward convection must occur on closed field lines. A suggestion is made that many of the seemingly conflicting observations that have been made in the region of the dayside cusps can be explained if significant distortions of closed field lines near the dayside magnetopause are allowed and if closed and open field lines coexist in the cusp, particularly near the entry layer.Effects of the IMF on the nightside auroral oval and on the plasmapause stem chiefly from the expansion of the oval to lower latitudes which is produced by southward IMF components and from the impulsive substorm phenomena that become stronger and more probable with increasingly southward IMF.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

13.
14.
Interplanetary origin of geomagnetic storms   总被引:8,自引:0,他引:8  
Around solar maximum, the dominant interplanetary phenomena causing intense magnetic storms (Dst<−100 nT) are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two interplanetary structures are important for the development of storms, involving intense southward IMFs: the sheath region just behind the forward shock, and the CME ejecta itself. Whereas the initial phase of a storm is caused by the increase in plasma ram pressure associated with the increase in density and speed at and behind the shock (accompanied by a sudden impulse [SI] at Earth), the storm main phase is due to southward IMFs. If the fields are southward in both of the sheath and solar ejecta, two-step main phase storms can result and the storm intensity can be higher. The storm recovery phase begins when the IMF turns less southward, with delays of ≈1–2 hours, and has typically a decay time of 10 hours. For CMEs involving clouds the intensity of the core magnetic field and the amplitude of the speed of the cloud seems to be related, with a tendency that clouds which move at higher speeds also posses higher core magnetic field strengths, thus both contributing to the development of intense storms since those two parameters are important factors in genering the solar wind-magnetosphere coupling via the reconnection process. During solar minimum, high speed streams from coronal holes dominate the interplanetary medium activity. The high-density, low-speed streams associated with the heliospheric current sheet (HCS) plasma impinging upon the Earth's magnetosphere cause positive Dst values (storm initial phases if followed by main phases). In the absence of shocks, SIs are infrequent during this phase of the solar cycle. High-field regions called Corotating Interaction Regions (CIRs) are mainly created by the fast stream (emanating from a coronal hole) interaction with the HCS plasma sheet. However, because the Bz component is typically highly fluctuating within the CIRs, the main phases of the resultant magnetic storms typically have highly irregular profiles and are weaker. Storm recovery phases during this phase of the solar cycle are also quite different in that they can last from many days to weeks. The southward magnetic field (Bs) component of Alfvén waves in the high speed stream proper cause intermittent reconnection, intermittent substorm activity, and sporadic injections of plasma sheet energy into the outer portion of the ring current, prolonging its final decay to quiet day values. This continuous auroral activity is called High Intensity Long Duration Continuous AE Activity (HILDCAAs). Possible interplanetary mechanisms for the creation of very intense magnetic storms are discussed. We examine the effects of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event. We also consider the effects of interplanetary shock events on the sheath plasma. Examination of profiles of very intense storms from 1957 to the present indicate that double, and sometimes triple, IMF Bs events are important causes of such events. We also discuss evidence that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense storms. Finally, we argue that a combination of complex interplanetary structures, involving in rare occasions the interplanetary manifestations of subsequent CMEs, can lead to extremely intense storms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Conclusions The magnetosphere boundary has been penetrated in several places, conflicting evidence about the ring current location has been found, and the field exterior to the boundary has revealed some unexpected features. Pronouncements about the structure of the geomagnetic and interplanetary magnetic fields are still based on scanty evidence but the experimental basis of such estimates is more adequate than in 1958.The boundary between the geomagnetic field and the interplanetary medium has been found, by Explorer XII, to be located at approximately 10 R E on the sunlit side of the earth near the equator. It has been observed to fluctuate between 8 and 12 R E during August, September and October of 1961. During several days in March, 1961, the boundary, on the dark side of the earth, was penetrated repeatedly by Explorer X on an outbound pass near 135° from the earth-sun line. Several interpretations are possible; the most reasonable one at present is that the boundary was fluctuating in this period, placing the satellite alternately inside the geomagnetic field and outside in a region of turbulent magnetic fields and plasma flow.A region of turbulent magnetic fields was also observed by Pioneer I, Pioneer V, and Explorer XII between 10 and 15 R E on the sunlit side of the earth. Pioneer V observed also a steady field 2 to 5 gammas in magnitude beyond 20 R E. It appears that there exists a region of turbulent magnetic fields between the geomagnetic field boundary near 10 R E, and another boundary, located near 14–15 R E near the earth-sun line. This second boundary was seen only by Pioneer I and Pioneer V; Explorer XII and Explorer X apparently did not reach it. This boundary has been tentatively identified as a shock front in the flow of solar plasma about the magnetosphere (see Figure 5).41, 42 The geomagnetic field inside the boundary is relatively quiet. An abrupt transition in the magnitude of fluctuations occurs at the boundary surface. The ratio of fluctuation amplitude, B, to average field, B, decreases from 1 to 0.1 on a passage through the boundary on 13 September 1961.43 The boundary is not unstable in the solar wind but fluctuations in solar wind pressure do cause changes in boundary location.42,43 The ring current location appears to be above 1.4 R E and below 5 R E on the basis of Pioneer I, Vanguard III, and Explorer XII data. Lunik I and II records indicate that it is located between 3 and 4 R E. Explorer VI data indicates that it must be at distances greater than 4 R E on the dark side of the earth. Some variation in altitude of a ring current with time appears likely, but the bulk of present evidence limits a possible ring current to a distance of 3 to 5 R E.The interplanetary field during quiet times is of the order of 2 to 5 gammas. The direction indicated for this field, with a significant component perpendicular to the earth-sun line, is puzzling in view of solar cosmic ray transit times. Solar disturbances with resultant plasma flow past the satellite produce increases in the field magnitude. Field increases at the satellite are sometimes correlated with disturbances observed at the earth.Further investigations are needed to map the magnetosphere and boundary more completely, to investigate the postulated shock front and the turbulent region inside, to refute or confirm the ring current theory, and to measure the interplanetary field direction and magnitude more completely. Theoretical studies are needed to support these experiments and to suggest new avenues of investigations. Particularly needed are theoretical investigations of collisionless shock fronts in plasma flow and of characteristics of the flow between the shock front and the obstacle.  相似文献   

16.
The interaction of a stellar magnetosphere with a thin accretion disk is considered. Specifically, I consider a model in which (1) the accretion disk is magnetically linked to the star over a large range of radii and (2) the magnetic diffusivity of the disk is sufficiently small that there is little slippage of field lines within the disk on the rotation time scale. In this case the magnetic energy built up as a result of differential rotation between the star and the disk is released in quasi-periodic reconnection events occuring in the magnetosphere (Aly and Kuijpers 1990). The radial transport of magnetic flux in such an accretion disk is considered. It is show that the magnetic flux distribution is stationary on the accretion time scale, provided the time average of the radial component of the field just above the disk vanishes. A simple model of the time-dependent structure of the magnetosphere is presented. It is shown that energy release in the magnetosphere must take place for (differential) rotation angles less than about 3 radians. The magnetic flux distribution in the disk depends on the precise value of the rotation angle.  相似文献   

17.
Nishida  A. 《Space Science Reviews》2000,91(3-4):507-577
Geomagnetic field lines that are stretched on the nightside of the Earth due to reconnection with the interplanetary magnetic field constitute the Earth's magnetotail. The magnetotail is a dynamic entity where energy imparted from the solar wind is stored and then released to generate disturbance phenomena such as substorms. This paper gives an updated overview on the physics of the magnetotail by drawing heavily from recent research conducted with the GEOTAIL satellite. It summarizes firstly the basic properties of the magnetotail such as shape, size and magnetic flux content, internal motion and plasma regimes. Then it describes characteristics of tail plasmas of the solar-wind and the ionosphere origins. Thirdly it addresses acceleration and heating of plasmas in the magnetotail, where reconnection between the stretched field lines is the main driver but the site of the acceleration is not limited to the immediate vicinity of the neutral line. In the collisionless regime of the plasma sheet kinetic behaviors of ions and electrons control the acceleration process. The paper closes by enumerating the problems posed for future studies.  相似文献   

18.
The models are examined which are proposed elsewhere for describing the magnetic field dynamics in ring-currentDR during magnetic storms on the basis of the magnetospheric energy balance equation. The equation parameters, the functions of injectionF and decay , are assumed to depend on interplanetary medium parameters (F and during the storm main phase) and on ring-current intensity ( during the recovery phase). The present-day models are shown to be able of describing theDR variations to within a good accuracy (the r.m.s. deviation 5 < < 15 nT, the correlation coefficient 0.85 <r < 1). The models describe a fraction of the geomagnetic field variation during a magnetic storm controlled by the geoeffective characteristic of interplanetary medium and, therefore responds directly to the variation of the latter. The fraction forms the basis of the geomagnetic field variations in low and middle latitudes. The shorter-term variations ofDR are affected by the injections into the inner magnetosphere during substorm intervals.During magnetic storms, the auroral electrojets shift to subauroral latitudes. When determining theAE indices, the data from the auroral-zone stations must be supplemented with the data from subauroral observatories. Otherwise, erratic conclusions may be obtained concerning the character of the relationships ofDR toAE or ofAE to interplanetary medium parameters. Considering this circumstance, the auroral electrojet intensity during the main phase is closely related to the energy flux supplied to the ring current. It is this fact that gives rise simultaneously to the intensification of auroral electrojets and to the large-scale decrease of magnetic field in low latitudes.The longitudinal asymmetry of magnetic field on the Earth's surface is closely associated with the geoeffective parameters of interplanetary medium, thereby making it possible to model-estimate the magnetic field variations during magnetic storms at given observatories. The inclusion of the field asymmetry due to the system of large-scale currents improves significantly the agreement between the predicted and model field variations at subauroral and midlatitude observatories. The first harmonic amplitude of field variation increases with decreasing latitude. This means that the long-period component of theD st -variation asymmetry is due rather to the ring-current asymmetry, while the shorter-term fluctuations are produced by electrojets. The asymmetry correlates better with theAL indices (westward electrojet) than with theAU indices (eastward electrojet).The total ion energy in the inner magnetosphere during the storm main phase is sufficient for the magnetic field observed on the Earth's surface to be generated. The energy flux to the ring current is 15% of the -energy flux into the magnetosphere.  相似文献   

19.
The most significant information about fields and plasmas in the outer solar system, based on observations by Pioneer 10 and 11 investigations, is reviewed. The characteristic evolution of solar wind streams beyond 1 AU has been observed. The region within which the velocity increases continuously near 1 AU is replaced at larger distances by a thick interaction region with abrupt jumps in the solar wind speed at the leading and trailing edges. These abrupt increases, accompanied by corresponding jumps in the field magnitude and in the solar wind density and temperature, consist typically of a forward and a reverse shock. The existence of two distinct corotating regions, separated by sharp boundaries, is a characteristic feature of the interplanetary medium in the outer solar system. Within the interaction regions, compression effects are dominant and the field strength, plasma density, plasma temperature and the level of fluctuations are enhanced. Within the intervening quiet regions, rarefaction effects dominate and the field magnitude, solar wind density and fluctuation level are very low. These changes in the structure of interplanetary space have significant consequences for the many energetic particles propagating through the medium. The interaction regions control the access to the inner solar system of relativistic electrons from Jupiter's magnetosphere. The interaction regions and shocks appear to be associated with an acceleration of solar protons to MeV energies. Flare-generated shocks are observed to be propagating through the outer solar system with constant speed, implying that the previously recognized deceleration of flare shocks takes place principally near the Sun. Radial gradients in the solar wind and interplanetary field parameters have been determined. The solar wind speed is nearly constant between 1 and 5 AU with only a slight deceleration of 30 km s+1 on the average. The proton flux follows an r +2 dependence reasonably well, however, the proton density shows a larger departure from this dependence. The proton temperature decreases steadily from 1 to 5 AU and the solar wind protons are slightly hotter than anticipated for an adiabatic expansion. The radial component of the interplanetary field falls off like r +2 and, on the average, the magnitude and spiral angle also agree reasonably well with theory. However, there is evidence, principally within quiet regions, of a significant departure of the azimuthal field component and the field magnitude from simple theoretical models. Pioneer 11 has obtained information up to heliographic latitudes of 16°. Observations of the interplanetary sector structure show that the polarity of the field becomes gradually more positive, corresponding to outward-directed fields at the Sun, and at the highest latitudes the sector structure disappears. These results confirm a prior suspicion that magnetic sectors are associated with an interplanetary current sheet surrounding the Sun which is inclined slightly to the solar equator.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

20.
The results of Soviet and American spacecraft plasma and magnetic experiments show that a bow shock of Venus forms as a result of the direct interaction of the solar wind with the ionosphere. The shape and the position of the Venus bow shock, in general, correspond to a very weak dissipation of solar wind energy in the ionosphere.The measured magnetic field near the planet is strongly influenced by IMF; this fact is evidence of an induced magnetosphere. Some results of laboratory simulation and computer experiments are also in favor of such an induced magnetosphere.The interaction with the ionosphere manifests itself in the existence of a boundary region on the nightside where solar wind entry into the optical umbra of the planet is observed.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号