首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Spacecraft and interplanetary probes orbiting at high altitudes experience forces due to solar radiation pressure, which can be used for maneuvering. The question of large angle pitch attitude maneuvers of satellites using solar radiation torque is considered. For pitch axis maneuver, two highly reflective control surfaces are used to generate radiation moment. The solar radiation moment is a complex nonlinear function of the attitude and parameters of the satellite, the orbital parameters, and the deflection angles of the reflective control surfaces. It is assumed that the parameters of the satellite model are unknown. Based on a backstepping design technique, a nonlinear adaptive control law is derived for the control of the pitch angle. In the closed-loop system, the pitch angle asymptotically tracks prescribed reference trajectories. Simulation results are presented to show that the adaptive control system accomplishes attitude control of the satellite in spite of the parameter uncertainties in the system.  相似文献   

2.
The development of a pitch pointing control system for an advanced high performance fighter aircraft using eigenstructure assignment and command generator tracking schemes is presented. A desired eigenstructure is first chosen to achieve a desired decoupling (i.e., pitch attitude and flight path angle), and to obtain a desired damping and rise time. The command generator tracker is next used to ensure zero steady-state error-to-step commands. The stability robustness to the parameter variations of the closed-loop system is evaluated in the sense of the conditioning of the achieved eigenstructure by using singular value analysis technique. The analysis and synthesis techniques for the pitch pointing control system are illustrated by applying the techniques to F-15 aircraft as a part of the NASA/USAF program named ACTIVE (Advanced Controls for integrated Vehicles)  相似文献   

3.
A minimax filter is derived to estimate the state of a system, using observations corrupted by colored noise, when large uncertainties in the plant dynamics and process noise are present.  相似文献   

4.
A technique by which the trajectory optimization problem can be formulated to include the trajectory sensitivity functions in the performance index is presented. It is shown that an explicit steering law, which can be derived for the upper atmospheric flight of a vehicle, is a function of the sensitivity state, adjoint vectors, and the parameters of the chosen trajectory dynamics. The new steering law is compared with the one without sensitivity considerations. A computational method is presented to implement the new steering law.  相似文献   

5.
刘刚  Y.Murad  何麟书 《航空学报》2005,26(1):50-53
提出了一种进行单级和多级火箭飞行方案设计的一般方法。这是一种基于微积分变分原理的工程方法。其目的是根据给定导弹的攻角方案设计其俯仰角方案。最大攻角的优化根据给定的初始设计值采用正交法进行。该方法可以快速地进行多级火箭的飞行方案设计。  相似文献   

6.
A robust adaptive control scheme is proposed that can be applied to a practical autopilot design for feedback-linearized skid-to-turn (STT) missiles with aerodynamic uncertainties. The approach is to add a robust adaptive controller to a feedback-linearizing controller in order to reduce the influence of the aerodynamic uncertainties. The proposed robust adaptive control scheme is based on a sliding mode control technique with an adaptive law for estimating the unknown upper bounds of uncertain parameters. A feature of the proposed scheme is that missile systems with aerodynamic uncertainties can be controlled effectively over a wide operating range of flight conditions. It is shown, using Lyapunov stability theory, that the proposed scheme can give sufficient tracking capability and stability for a feedback-linearized STT missile with aerodynamic uncertainties. The six-degree-of-freedom nonlinear simulation results also show that good performance for several uncertainty models and engagement scenarios can be achieved by the proposed scheme in practical night conditions  相似文献   

7.
A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output (MIMO) aeroelastic system in the presence of wind gust, system uncertainties, and input nonlinearities consisting of input saturation and dead-zone. In regard to the input nonlinear-ities, the right inverse function block of the dead-zone is added before the input nonlinearities, which simplifies the input nonlinearities into an equivalent input saturation. To deal with the equiv-alent input saturation, an auxiliary error system is designed to compensate for the impact of the input saturation. Meanwhile, uncertainties in pitch stiffness, plunge stiffness, and pitch damping are all considered, and radial basis function neural networks (RBFNNs) are applied to approximate the system uncertainties. In combination with the designed auxiliary error system and the backstep-ping control technique, a constrained adaptive neural network controller is designed, and it is pro-ven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method. Finally, extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust, system uncertainties, and input nonlinearities.  相似文献   

8.
This paper concerns the flutter, post-flutter and adaptive control of a non-linear 2-D wing-flap system operating in supersonic/hypersonic flight speed regimes. An output feedback control law is implemented and its performance toward suppressing flutter and limit cycle oscillations (LCOs) as well as reducing the vibrational level in the subcritical flight speed range is demonstrated. This control law is applicable to minimum phase systems and we provide conditions for stability of the zero dynamics. The control objective is to design a control strategy to stabilize the pitch angle while adaptively compensating for uncertainties in all the aeroelastic model parameters. It is shown that all the states of the closed-loop system are asymptotically stable.  相似文献   

9.
We present a robust solution for data reduction in array processing. The purpose is to reduce the computation and improve the performance of applied signal processing algorithms by mapping the data into a lower dimension beamspace (BS) through a transformation. Nulls steering to interference are incorporated into a transformation using the subspace projection technique, and the BS spatial spectrum estimation accuracy is evaluated and maximized with a measure. The derived transformation tries to preserve the full-dimension Cramer-Rao bounds (CRBs) for the parameters of interest while rejecting undesired signals effectively. When compared with an optimal method and an adaptive approach, simulation results show that significant improvements are obtained in terms of BS direction-of-arrival (DOA) estimation root-mean-squared error (RMSE), bias, and resolution probability.  相似文献   

10.
This paper presents a novel approach to autopilot design for highly maneuvering bank-to-turn (BTT) missiles. In the design and performance analysis of the proposed nonlinear autopilot, all nonlinearities of missile dynamics including the coupling between roll, yaw, and pitch channels as well as the asymmetric structure of missile body are taken into full account. It is shown that through a kind of feedback linearization technique along with a singular perturbation-like technique, the input/output (I/O) dynamic characteristics of pitch, yaw, and roll channels are made linear, decoupled, and independent of flight conditions such as air density and missile velocity. In particular, the proposed autopilot controllers can provide excellent set-point tracking performance for roll and pitch channels while keeping the side-slip angle negligible. The generality and practicality of our approach are demonstrated through mathematical analysis and various simulation results using an ILAAT missile  相似文献   

11.
针对长寿命运行卫星在轨维护中出现的备份偏置动量轮离散性差异较大,导致俯仰角收敛缓慢的问题,在姿态现象分析的基础上,根据卫星姿态动力学原理,建立偏置动量轮工作模式下的俯仰姿态的PID(Proportion Integration Differentiation,比例积分微分)控制模型,并进行系统开环与闭环传递函数公式推导。然后在伯德图(Bode Diagram)基础上,重点分析相位裕量的敏感参数,给出俯仰姿态控制回路的带宽调整方法,实现变带宽控制。卫星偏置动量轮在轨切换维护的结果表明,通过及时调整PID参数,减小回路带宽,可以有效改善相位裕量,保持卫星控制性能,实现俯仰姿态快速收敛,且俯仰角控制精度优于0.03°,取得较好的应用效果。  相似文献   

12.
阻拦索断裂对螺旋桨舰载机着舰安全影响数值分析   总被引:1,自引:0,他引:1  
张声伟  段卓毅  耿建中  王立波 《航空学报》2019,40(4):622293-622293
喷气动力舰载机着舰拦阻滑跑,如阻拦索断裂,其逃逸复飞的概率极小。螺旋桨动力舰载机零升阻力大,推重比小,其安全复飞的能力值得研究。本文基于建立的螺旋桨舰载机逃逸复飞仿真模型(含阻拦索工作模型、发动机动力响应模型、升降舵操纵模型与气动力的动力影响修正模型),数值模拟了E-2C舰载预警机着舰阻拦索断裂情况下,其逃逸复飞的过程。仿真计算显示对象飞机在不同气动力、离舰速度与舵面操纵逻辑状态下,其纵向动力学方程中敏感参数与航迹下沉量的动态变化,结合视频数据分析其复飞成功的原因。研究表明:动力对螺旋桨舰载机俯仰力矩与升力特性的影响是其逃逸复飞成功的关键。动力影响使对象飞机的俯仰力矩曲线上移0.15,8°迎角下纵向静稳定性减小85%,升力线斜率增大29.7%、最大升力系数增大39%。这显著改善了螺旋桨飞机逃逸复飞状态下俯仰操纵的敏捷性,升降舵操纵效率与失速特性。动力影响使螺旋桨舰载机可在较小的加速度、离舰速度与有限的留空时间情况下,迅速改变其航迹角,减小航迹下沉量,保证逃逸复飞安全。  相似文献   

13.
The aerospace launch vehicle, developed today by manufacturers, is characterized by high nonlinearity, open loop instability and time-varying behaviors. The transfer functions of the vehicle can be extracted using well-known linearization methodology. This paper presents an alternative to obtain the transfer functions via closed-loop identification using six degrees of freedom nonlinear simulation software. The pitch program is taken into account as the external excitation. Control and stability of the process are performed using robust PID controller. The model structure with some unknown parameters is obtained after mathematical modeling, thus the case of our problem is a parameter identification one. Time-variant parameters are estimated by Kalman filter approach with the aid of ARX model structure.  相似文献   

14.
章涛  钟伦珑  来燃  郭骏骋 《航空学报》2021,42(6):324592-324592
杂波谱稀疏恢复空时自适应处理(STAP)是一种有效减少杂波样本数需求的机载雷达杂波抑制方法。然而,空时平面被离散地划分为若干个网格点来构建空时导向矢量字典,当字典在失配时,杂波脊不能准确落在预先离散化的网格点上,稀疏恢复STAP性能严重下降。提出了一种基于稀疏贝叶斯学习的字典失配杂波空时谱估计方法,首先利用二维泰勒级数建立空时动态字典模型,然后将字典失配误差作为待估超参数构建贝叶斯稀疏恢复模型,并利用失配误差估计值对空时导向矢量字典进行修正,最后利用修正后的空时导向矢量字典重构杂波协方差矩阵,进而计算杂波空时谱。实验证明,该方法能够有效提高字典失配情况下的杂波谱稀疏恢复精度,杂波抑制性能优于已有字典预先离散化的稀疏贝叶斯学习STAP方法。  相似文献   

15.
Spectral-domain covariance estimation with a priori knowledge   总被引:2,自引:0,他引:2  
A knowledge-aided spectral-domain approach to estimating the interference covariance matrix used in space-time adaptive processing (STAP) is proposed. Prior knowledge of the range-Doppler clutter scene is used to identify geographic regions with homogeneous scattering statistics. Then, minimum-variance spectral estimation is used to arrive at a spectral-domain clutter estimate. Finally, space-time steering vectors are used to transform the spectral-domain estimate into a data-domain estimate of the clutter covariance matrix. The proposed technique is compared with ideal performance and to the fast maximum likelihood technique using simulated results. An investigation of the performance degradation that can occur due to various inaccurate knowledge assumptions is also presented  相似文献   

16.
Solar sails have much attracted the interest of the scientific community as an advanced low-thrust propulsion means capable of promoting the reduction of mission costs and the feasibility of missions that are not practically accessible via conventional propulsion because of their large ΔV requirements. To reduce the overall flight time, a given mission is usually analyzed in the framework of a minimum time control problem, with the employment of a continuous steering law. The aim of this paper is to investigate the performance achievable with a piecewise-constant steering law whose aim is to substantially reduce the complex task of reorienting the sail over the whole mission. Unlike previous studies based on direct approaches, here we use an indirect method to optimally select the sail angle within a set of prescribed values. The corresponding steering law translates the results available for continuous controls to the discrete case, and is able of producing trajectories that are competitive in performance with the optimum variable direction program.  相似文献   

17.
《中国航空学报》2020,33(7):2024-2042
Designing a stable and robust flight control system for an Unmanned Aerial Vehicle (UAV) is an arduous task. This paper addresses the trajectory tracking control problem of a Ducted Fan UAV (DFUAV) using offset-free Model Predictive Control (MPC) technique in the presence of various uncertainties and external disturbances. The designed strategy aims to ensure adequate flight robustness and stability while overcoming the effects of time delays, parametric uncertainties, and disturbances. The six degrees of freedom DFUAV model is divided into three flight modes based on its airspeed, namely the hover, transition, and cruise mode. The Dryden wind turbulence is applied to the DFUAV in the linear and angular velocity component. Moreover, different uncertainties such as parametric, time delays in state and input, are introduced in translational and rotational components. From the previous work, the Linear Quadratic Tracker with Integrator (LQTI) is used for comparison to corroborate the performance of the designed controller. Simulations are computed to investigate the control performance for the aforementioned modes and different flight phases including the autonomous flight to validate the performance of the designed strategy. Finally, discussions are provided to demonstrate the effectiveness of the given methodology.  相似文献   

18.
The described method of antenna null steering makes use of calibrated and stored weight distributions for each solid angle increment of a radar search volume. Based upon direction measurement to an interference source, the appropriate weight distributions are calculated for each relative antenna position. In addition to the programmed part an adaptive inner loop is included for fine null adjustment. The major parameters and characteristics of the null steering technique are studied and evaluated through computer simulation programs.  相似文献   

19.
针对具有参数不确定性和外加干扰的飞机数学模型在控制执行机构受限的前提下,设计了带有积分项的滑动平面方程,通过选择适当的对角参数矩阵实现三通道的解耦控制。在分析Lyapunov函数的基础上,设计了变结构控制律,既满足滑动平面的到达条件,又保证了系统渐地稳定。对F-16战斗机俯仰角速度跟踪控制系统进行了设计,仿真结果表明,俯仰角速度以较高的精度跟踪给一值,系统性能良好。  相似文献   

20.
Robust adaptive matched filtering (AMF) whereby outlier data vectors are censored from the covariance matrix estimate is considered in a maximum likelihood estimation (MLE) setting. It is known that outlier data vectors whose steering vector is highly correlated with the desired steering vector, can significantly degrade the performance of AMF algorithms such as sample matrix inversion (SMI) or fast maximum likelihood (FML). Four new algorithms that censor outliers are presented which are derived via approximation to the MLE solution. Two algorithms each are related to using the SMI or the FML to estimate the unknown underlying covariance matrix. Results are presented using computer simulations which demonstrate the relative effectiveness of the four algorithms versus each other and also versus the SMI and FML algorithms in the presence of outliers and no outliers. It is shown that one of the censoring algorithms, called the reiterative censored fast maximum likelihood (CFML) technique is significantly superior to the other three censoring methods in stressful outlier scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号