首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The survivability of resistant terrestrial microbes, bacterial spores of Bacillus subtilis, was investigated in the BIOPAN facility of the European Space Agency onboard of Russian Earth-orbiting FOTON satellites (BIOPAN I -III missions). The spores were exposed to different subsets of the extreme environmental parameters in space (vacuum, extraterrestrial solar UV, shielding by protecting materials like artificial meteorites). The results of the three space experiments confirmed the deleterious effects of extraterrestrial solar UV radiation which, in contrast to the UV radiation reaching the surface of the Earth, also contains the very energy-rich, short wavelength UVB and UVC radiation. Thin layers of clay, rock or meteorite material were shown to be only successful in UV-shielding, if they are in direct contact with the spores. On Mars the UV radiation climate is similar to that of the early Earth before the development of a protective ozone layer in the atmosphere by the appearance of the first aerobic photosynthetic bacteria. The interference of Martian soil components and the intense and nearly unfiltered Martian solar UV radiation with spores of B. subtilis will be tested with a new BIOPAN experiment, MARSTOX. Different types of Mars soil analogues will be used to determine on one hand their potential toxicity alone or in combination with solar UV (phototoxicity) and on the other hand their UV protection capability. Two sets of samples will be placed under different cut-off filters used to simulate the UV radiation climate of Mars and Earth. After exposure in space the survival of and mutation induction in the spores will be analyzed at the DLR, together with parallel samples from the corresponding ground control experiment performed in the laboratory. This experiment will provide new insights into the principal limits of life and its adaptation to environmental extremes on Earth or other planets which and will also have implications for the potential for the evolution and distribution of life.  相似文献   

2.
A wide variety of organisms (the so-called "anhydrobiotes') is able to survive long periods of time in a state of utmost dehydration and can thus survive in extremely dry environments including artificially imposed or space vacuum. Known strategies of survival include the accumulation of certain polyols, especially disaccharides, which help prevent damage to membranes and proteins. Here we report that DNA in vacuum-dried spores is damaged to a very substantial degree by processes leading to DNA strand breaks. Most of these lesions are obviously repaired during germination, but extensive damage to DNA and enzymes after long exposure times (months to years) finally diminish the chances of survival.  相似文献   

3.
The nuclei of cells within the bodies of astronauts traveling on extended missions outside the geomagnetosphere will experience single traversals of particles with high LET (e.g., one iron ion per one hundred years, on average) superimposed on a background of tracks with low LET (approximately one proton every two to three days, and one helium ion per month). In addition, some cell populations within the body will be proliferating, thus possibly providing increasing numbers of cells with "initiated" targets for subsequent radiation hits. These temporal characteristics are not generally reproduced in laboratory experimental protocols. Implications of the differences in the temporal patterns of radiation delivery between conventionally designed radiation biology experiments and the pattern to be experienced in space are examined and the importance of dose-rate and cell proliferation are pointed out in the context of radiation risk assessment on long missions in space.  相似文献   

4.
Environmental UV radiation can be quantified using spore dosimetry, which measures the inactivation of repair-deficient Bacillus subtilis spores dried on a membrane filter. The system exhibits highly selective sensitivity to UV radiation, not being affected by various environmental adversities, such as high and low temperature and humidity. Biologically-effective dose rate and cumulative dose of ambient radiation are measurable under various conditions at various places on the earth, including tropical, temperate, and polar sites. Applications to monitor the exposure at the surface of organisms including humans and plants have also been advanced.  相似文献   

5.
By the turn of this century, long-duration space missions, either in low Earth orbit or for got early planetary missions, will become commonplace. From the physiological standpoint, exposure to the weightless environment results in changes in body function, some of which are adaptive in nature and some of which can be life threatening. Important issues such as environmental health, radiation protection, physical deconditioning, and bone and muscle loss are of concern to life scientists and mission designers. Physical conditioning techniques such as exercise are not sufficient to protect future space travellers. A review of past experience with piloted missions has shown that gradual breakdown in bone and muscle tissue, together with fluid losses, despite a vigorous exercise regimen can ultimately lead to increased evidence of renal stones, musculoskeletal injuries, and bone fractures. Biological effects of radiation can, over long periods of time increase the risk of cancer development. Today, a vigorous program of study on the means to provide a complex exercise regimen to the antigravity muscles and skeleton is under study. Additional evaluation of artificial gravity as a mechanism to counteract bone and muscle deconditioning and cardiovascular asthenia is under study. New radiation methods are being developed. This paper will deal with the results of these studies.  相似文献   

6.
A given integrated radiation dose delivered from a LINAC as a train of pulses (50/s), characteristically of 0.1 to 5 microseconds pulse length with dose rates within the pulse between 0.38 and 38 krads/microsecond, inactivates bacterial spores in water suspension more effectively than the same dose given as Co60 gamma rays. This enhancement of radiation damage occurs both in the presence and in the absence of oxygen and is not explained by either pulse dose rate or pulse length alone, but is monotonically related to the product of these pulse parameters, pulse dose. The enhancement appears to result from the interaction, within individual spores, of free radical species of average lifetime of about 2-5 microseconds. The time scale over which these species operate suggests that they are freely diffusable. Prevention, in part, of their damaging effect by the presence of selective scavenging agents is evidence that OH radicals are involved. Measurements of H2O2 yield for irradiation conditions that show a gradation of enhancement of damage correlate strongly with the extent of damage observed.  相似文献   

7.
The risks to aircrew health posed by prolonged exposure to low levels of ionizing radiation at aircraft altitudes have recently received renewed attention. Civil and military aircraft currently on the drawing board are expected to operate at higher altitudes (>12 km) and fly longer ranges than do existing aircraft, thereby exposing their crews to higher levels of ionizing radiation, for longer periods of time. We are currently carrying out dosimetric measurements of the ionizing radiation environment at approximately 20 km altitude using portable Si detectors aboard NASA's two ER-2 high altitude research aircraft. The instruments, Liulin-4J, have been extensively calibrated at several particle accelerators. With these instruments, we can measure not only absorbed dose, but also variation of the absorbed dose as a function of time. We report radiation dose measurements as function of time, altitude, and latitude for several ER-2 missions.  相似文献   

8.
Spores of Bacillus subtilis were exposed to selected factors of space (vacuum, solar UV radiation, heavy ions of cosmic radiation), and their response was studied after recovery. These investigations were supplemented by ground-based studies under simulated space conditions. The vacuum of space did not inactivate the spores. However, vacuum-induced structural changes in the DNA, and probably in the proteins, caused a supersensitivity to solar UV radiation. This phenomenon is caused by the production of specific photoproducts in DNA and protein, which cannot be removed by normal cellular repair processes. In vegetative bacterial cells, exposed to vacuum, cell dehydration led to damage of the cell membrane, which could be partly repaired during subsequent incubation. The high local effectiveness of the cosmic heavy ions further decreases the chance that spores can survive for any length of time in space. Nonetheless, a spore travelling through space and protected from ultraviolet radiation could possibly survive an interplanetary journey. Such a situation favors panspermia as a possible explanation for the origin of life.  相似文献   

9.
Earthly microorganisms might have contaminated Mars for millions of years by intellectual activities or natural transfer. Knowledge on the preservation of microorganisms may help our searching for life on outer planets, particularly Mars-contaminated earthly microorganisms at ancient time. Extreme dryness is one of the current Mars characteristics. However, a humid or watery Mars at earlier time was suggested by evidence accumulated in recent decades. It raises the question that whether water helps preservation of the microorganisms or not, particularly those with high possibility of interplanetary transfer like spores and Deinococci. In this study, we examined the effects of desiccation and high humidity on survival and DNA double strand breaks (DSB) of Escherichia coli, Deinococcus radiodurans and spores of Bacillus pumilus at 25, 4 and −70 °C. They exhibited different survival rates and DSB patterns under desiccation and high humidity. Higher survival and less DSB occurred at lower temperature. We suggest that some Mars-contaminated bacteria might have been viably preserved on cold Mars regions for long periods, regardless of water availability. It is more likely to find ancient spores than ancient Deinococci on Mars. In our search for preserved extraterrestrial life, priority should be given to the Mars Polar Regions.  相似文献   

10.
Radiation protection involves the limitation of exposure to below threshold doses for direct (or deterministic) effects and a knowledge of the risk of stochastic effects after low doses. The principal stochastic risk associated with low dose rate galactic cosmic rays is the increased risk of cancer. Estimates of this risk depend on two factors (a) estimates of cancer risk for low-LET radiation and (b) values of the appropriate radiation weighting factors, WR, for the high-LET radiations of galactic cosmic rays. Both factors are subject to considerable uncertainty. The low-LET cancer risk derived from the late effects of the atomic bombs is vulnerable to a number of uncertainties including especially that from projection in time, and from extrapolation from high to low dose rate. Nevertheless, recent low dose studies of workers and others tend to confirm these estimates. WR, relies on biological effects studied mainly in non-human systems. Additional laboratory studies could reduce the uncertainties in WR and thus produce a more confident estimate of the overall risk of galactic cosmic rays.  相似文献   

11.
In connection with planetary quarantine, we have been studying the survival rates of nine species of terrestrial microorganisms (viruses, bacteria, yeasts, fungi, etc.) under simulated interstellar conditions. If common terrestrial microorganisms cannot survive in space even for short periods, we can greatly reduce expenditure for sterilizing space probes. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 k, 4 x 10(-6) torr), and protons irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, Tobacco mosaic virus, Bacillus subtilis spores, Aspergillus niger spores and Clostridiun mangenoti spores showed survival rates of 82%, 45%, 28%, and 25%, respectively. Furthermore. pathogenic Candida albicans showed 7% survival after irradiation corresponding to about 60 years in space.  相似文献   

12.
The effect of low temperature on the cell structure of bacteria isolated from permafrost results in structural changes leading to cell differentiation into types of resting cells rangign from spores showing a high endogenous dormancy to typical “dormant” cells of non-spore-forming bacteria showing exogenous dormancy, which is considered to be less highly resistant to extreme conditions in laboratory experiments. In permafrost, dormant cells of non-spore-forming bacteria may demonstrate considerable resistance to long-term freezing and as a result a higher survival level than spore-forming bacteria.  相似文献   

13.
Spores of different strains of Bacillus subtilis and the Escherichia coli plasmid pUC19 were exposed to selected conditions of space (space vacuum and/or defined wavebands and intensities of solar ultraviolet radiation) in the experiment ER 161 "Exobiological Unit" of the Exobiology Radiation Assembly (ERA) on board of the European Retrievable Carrier (EURECA). After the approximately 11 months lasting mission, their responses were studied in terms of survival, mutagenesis in the his (B. subtilis) or lac locus (pUC19), induction of DNA strand breaks, efficiency of DNA repair systems, and the role of external protective agents. The data were compared with those of a simultaneously running ground control experiment. The survival of spores treated with the vacuum of space, however shielded against solar radiation, is substantially increased, if they are exposed in multilayers and/or in the presence of glucose as protective, whereas all spores in "artificial meteorites", i.e. embedded in clays or simulated Martian soil, are killed. Vacuum treatment leads to an increase of mutation frequency in spores, but not in plasmid DNA. Extraterrestrial solar ultraviolet radiation is mutagenic, induces strand breaks in the DNA and reduces survival substantially; however, even at the highest fluences, i.e. 3 x 10(8) J m-2, a small but significant fraction of spores survives the insolation. Action spectroscopy confirms results of previous space experiments of a synergistic action of space vacuum and solar UV radiation with DNA being the critical target.  相似文献   

14.
We reported previously that emerged amoebae of Dictyostelium (D.) discoideum grew, aggregated and differentiated to fruiting bodies with normal morphology in space. Here, we investigated the effects of space radiation and/or microgravity on the number, viability, kinetics of germination, growth rate and mutation frequency of spores formed in space in a radiation-sensitive strain, gamma s13, and the parental strain, NC4. In gamma s13, there were hardly spores in the fruiting bodies formed in space. In NC4, we found a decrease in the number of spores, a delay in germination of the spores and delayed start of cell growth of the spores formed in space when compared to the ground control. However, the mutation frequency of the NC4 spores formed in space was similar to that of the ground control. We conclude that the depression of spore formation might be induced by microgravity and/or space radiation through the depression of some stage(s) of DNA repair during cell differentiation in the slime mold.  相似文献   

15.
16.
铷原子钟物理部分是铷原子钟的原子鉴频器,决定铷原子钟的短期和长期稳定度(1s以上),其中使用了金属铷、玻璃、镍铁合金等材料和一些双极性晶体管、运算放大器等器件,其核心部件铷泡是一个采用特殊真空工艺制造的器件,这些材料、器件和工艺的低剂量率辐射效应需要实验评价。本文提出并完成了铷原子钟物理部分的低剂量率辐射实验,采用Co60γ源,辐射剂量率0.01rad(Si)/s,总剂量50krad(Si),对铷原子钟物理部分和铷泡的辐射效应分别进行了实验评估。这项研究更加真实地逼近了空间的电离辐射,实验数据对于星载铷原子钟的在轨运行监测和下一代星载铷原子钟的抗辐射设计具有重要的作用。  相似文献   

17.
Many organisms from a wide variety of taxa have the ability to survive extreme dehydration, a phenomenon called "anhydrobiosis." Concomitantly with resistance to the adverse effects of drying, these organisms are also resistant to the effects of freezing to very low temperatures, elevated temperature for brief periods, and the effects of ionizing radiation. One result of their resistance to environmental extremes is a greatly prolonged life span. The anhydrobiotes that have been investigated share a common metabolic adaptation, the production of certain disaccharides as a large proportion of their dry weight. Using these disaccharides, we have investigated the sources of damage attendant upon drying and the mechanisms by which anhydrobiotes and model systems of isolated membranes and proteins avoid damage. This report summarizes aspects of this work.  相似文献   

18.
Vacuum exposure renders the survival of spores of Bacillus subtilis approximately five times more sensitive to ultraviolet light irradiation than exposure under atmospheric conditions. The photoproduct formation in spores irradiated under ultrahigh vacuum (UHV) conditions is compared to the photoproduct formation in spores irradiated at atmospheric pressure. Compared to irradiation at atmospheric pressure, where only the "spore photoproduct" 5-thyminyl-5,6-dihydrothymine (TDHT) can be detected, two additional photoproducts, known as the c,s and t,s isomers of thymine dimer (T<>T) are produced in vacuo. The spectral efficiencies for photoproduct formation in spores under atmospheric and vacuum conditions are compared. Since there is no increased formation of TDHT after irradiation in vacuum, TDHT cannot be made responsible for the observed vacuum effect. "Vacuum specific" photoproducts may cause a synergistic response of spores to the simultaneous action of ultraviolet light (UV) and UHV. Three different mechanisms are discussed for the enhanced sensitivity of B. subtilis spores to UV radiation in vacuum. The experiments described contribute valuable research information on the chance for survival of microorganisms in outer space.  相似文献   

19.
The original demonstration in the bacterial spore of the multiple actions of oxygen in modifying the responses of cells to ionizing radiation has now been verified in mammalian systems, pointing up the need for separate inquiry into each of the several components if the responses of mammalian cells are to be understood. We have provided physico-chemical explanations for only two of the four (at least) oxygen elements recognized in the spore: the reaction of diatomic oxygen with organic free radicals in dry spores; and an action of the hydroxy radical (OH) in spores at low [O2]. This paper will discuss newly recognized features of the oxygen responses that could reveal the nature of the other components. It will examine modulation of response by oxides of nitrogen, the similarities and differences among them and explanations for them that suggest further experiment, the importance of concentration of additive in determining both quantity and quality of response, and a general model that explains sensitizer action in terms of inhomogeneous chemistry.  相似文献   

20.
Electrostatic space radiation shielding   总被引:2,自引:0,他引:2  
For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号