首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
A 1984 survey of the nickel hydrogen (NiH2) battery industry is updated. Late 1980s and early 1990s issues are identified, and usage and testing results of the survey are summarized. NiH2 is the system of choice for new geosynchronous-earth-orbit (GEO) satellites and is being seriously considered for low-earth-orbit (LEO) applications. In five years, the annual cell production rate has doubled from approximately 1000 to 2000 cells. A number of cells under test have exceeded 20000 cycles at 40% DOD in LEO regimes, while other cells have achieved over 35 seasons in accelerated GEO regimes. The LEO database clearly indicates that NiH2 performance is at least as good as the best conventional nickel-cadmium performance demonstrated under test  相似文献   

2.
There has been a debate about the need for reconditioning nickel/hydrogen batteries in geosynchronous satellites. A study was done as part of life cycling, to determine the necessity of reconditioning and its effect on the cell performance. A 36 Ah nickel/hydrogen cell was put on a GEO simulated cycling at 15°C without reconditioning up to four eclipse seasons. The effect of reconditioning on the fifth and sixth eclipse seasons was studied. The study has conclusively proven the need for reconditioning and has shown the benefits of a high rate reconditioning. It has also been possible to draw some conclusions about the effect of a long duration trickle charge on the positive electrode  相似文献   

3.
IntroductionExpensive turbine parts like HPT(HighPressure Turine)blades or vanes are replaced bynew parts in case of damage.For example theburn through of the inner side of a blade or vane(Figure 1)is a frequently appearing damage,which cannot be repaired…  相似文献   

4.
Nickel-zinc battery technology is being developed for commercial applications requiring high energy density and high power capability. Development cells have demonstrated the ability to deliver over 60 Watt-hours per kilogram at the one hour rate. Cycle life has been improved to more than 600 cycles at 80% depth of discharge by using a patented, reduced solubility zinc electrode and an improved sealed cell design. More than 8000 charge/discharge cycles at 10% depth-of-discharge have been completed. Large quantities of sealed prismatic cells have been manufactured, including a 140 cell, 220 V battery for a hybrid electric vehicle (HEV)  相似文献   

5.
The US Air Force NiH2 LEO (low earth orbit) life test consists of 200 cells undergoing real-time LEO cycling, pulse discharge testing, and storage testing. To date, three of the program's four objectives have been met: NiH2 performance in LEO applications has been demonstrated. A significant number of cells have completed more than 20,000 cycles at 40% DOD. A database for cells of both 3.5 in. and 4.5 in. diameter has been generated. There have been no indications of any performance problems related to scaling up in terms of cell size. Initial data on the pulse discharge performance of a small number of cells has been demonstrated. Concerning the goal of achieving 20,000 cycles at 60% DOD, the data are mixed. Overall, it appears highly unlikely that cell designs such as those currently in the US Air Force test can achieve 20,000 cycles at 60%  相似文献   

6.
Charge equalization for an electric vehicle battery system   总被引:2,自引:0,他引:2  
Charge equalization for series connected battery strings has important ramifications on battery life. It enhances the uniformity of the battery cells and hence improves the life of the battery as a whole. A new charge equalization technique for a series string of battery cells has been recently proposed by the authors. The basic technique utilizes a simple isolated dc-to-dc converter with a capacitive output filter along with a multiwinding transformer. The possibility of integrating the trickle charge function with the charge equalization function is potentially very attractive, as it can lead to an efficient and low cost implementation  相似文献   

7.
State-of-charge indication for a secondary battery is becoming increasingly important for battery-operated electronics. Consumers are demanding fast charging times, increased battery lifetime, and fuel gauge capabilities. All of these demands require that the state of charge within a battery be known. One of the simplest methods employed to determine state of charge is to monitor the voltage of the battery. However, this method alone is not a good indicator of battery energy, since both NiMH and NiCd batteries have voltage-versus-energy curves that are essentially flat. This paper presents a more effective method of determining the state of charge in secondary cell batteries. A NiMH battery is used as our test vehicle, since it is one of the more difficult batteries to determine state of charge. This method monitors the battery's temperature, voltage, and discharge/charge rate. A microcontroller then manipulates the information, using look-up tables to determine the state of charge. Also, by modifying the look-up tables, this technique can be employed in many other battery technologies and is not limited to NiMH  相似文献   

8.
For update I see Energy and Environment: A Continuing Partnership, vol.3, American Nuclear Society (1991). An update of validation test results confirming the breakthrough in the low-Earth-orbit (LEO) cycle life of nickel-hydrogen cells containing 26% KOH electrolyte is presented. The results are part of an investigation of the effect of KOH concentration on life cycle. The cycle life of boiler plate cells was about 40000 LEO cycles compared to 3500 cycles for cells containing 31% KOH. The cycle regime was a stressful accelerated LEO, which consisted of a 27.5 min charge followed by a 17.5 min discharge (2×normal rate). The depth-of-discharge (DOD) was 80%. The cell temperature was maintained at 23°C. Results for six 48-Ah recirculation design IPV nickel-hydrogen flight battery cells currently being evaluated to validate the above findings are reported. Three of the cells contain 26% KOH (test cells), and three contain 31% KOH (control cells). They are undergoing real-time LEO cycle life testing. The 31% KOH cells failed at cycles 3729, 4165, and 11355. One of the 26% KOH cells failed at cycle 15314. The other two 26% KOH cells have been cycled for over 16600 cycles without failure  相似文献   

9.
The self-discharge losses in several lithium-ion cell designs have been measured by three different methods. The losses are separated into time-dependent and state-of-charge dependent contributions. For most cycling conditions, the time-dependent self-discharge losses are dominant; however, after several months of stand on open circuit or float charge, the state-of-charge dependent losses become significant. The self-discharge rate has been found to not increase monotonically with state-of-charge, but to drop somewhat at intermediate states of charge. The implications of these measurements for maintaining balanced cell capacities in batteries and establishing optimum storage voltage levels for batteries are discussed.  相似文献   

10.
Lockheed Martin Missiles and Space and Ultralife Batteries, Inc. are developing batteries for spacecraft and launchers based on Li-ion solid-polymer-electrolyte cell technology. These cells utilize a carbon anode, a manganese dioxide cathode and a solid polymer electrolyte. Electrode and electrolyte layers are thin and flexible. The electrode assembly is easily fabricated into thin, flat prismatic shapes using ordinary lamination techniques and is hermetically sealed in thin foil packaging. Cells ranging in capacity from 4 Ah to 50 Ah have been designed and are in development testing. The packaged cells have specific energies in excess of 100 Wh/kg. Prototype 30 volt batteries have also been designed and are being assembled and tested along with the critical battery cell charge management controllers needed to recharge all cells to full capacity while preventing overvoltage damage. The major results of this development effort are reviewed and the key issues for advancing this technology to flight qualification demonstrations are discussed  相似文献   

11.
A lithium ion battery charger has been developed for four and eight cell batteries or multiples thereof. This charger has the advantage over those using commercial lithium ion charging chips in that the individual cells are allowed to be taper charged at their upper charging voltage rather than be cutoff when all cells of the string have reached the upper charging voltage limit. Since 30-60% of the capacity of lithium ion cells may be restored during the taper charge, this charger has a distinct benefit of fully charging lithium ion batteries by restoring all of the available capacity to all of its cells  相似文献   

12.
NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, lithium-ion batteries have been identified as the battery chemistry of choice for a number of future applications, including Mars rovers and landers. The Mars 2001 Lander (Mars Surveyor Program MSP 01) will be one of the first missions which will utilize lithium-ion technology. This application will require two lithium-ion batteries, each being 28 V (eight cells), 25 Ah and 8 kg. In addition to the requirement of being able to supply at least 200 cycles and 90 days of operation on the surface of Mars, the battery must be capable of operation (both charge and discharge) at temperatures as low as -20°C. To assess the viability of lithium-ion cells for these applications, a number of performance characterization tests have been performed, including: assessing the room temperature cycle life, low temperature cycle life (-20°C), rate capability as a function of temperature, pulse capability, self-discharge and storage characteristics, as well as mission profile capability. This paper describes the Mars 2001 Lander mission battery requirements and contains results of the cell testing conducted to-date in support of the mission,  相似文献   

13.
There are at least three independent ways in which the solar wind modulates the flow of current density (Jz) in the global electric circuit. These are (A) changes in the galactic cosmic ray energy spectrum, (B) changes in the precipitation of relativistic electrons from the magnetosphere, and (C) changes in the ionospheric potential distribution in the polar caps due to magnetosphere-ionosphere coupling. The current density J z flows between the ionosphere and the surface, and as it passes through conductivity gradients it generates space charge concentrations dependent on J z and the conductivity gradient. The gradients are large at the surfaces of clouds and space charge concentrations of order 1000 to 10,000 elementary charges per cm3 can be generated at cloud tops. The charge transfers to droplets, many of which are evaporating at the cloud-clear air interface. The charge remains on the residual evaporation nuclei with a lifetime against leakage of order 1000 sec, and for a longer period the nuclei also retain coatings of sulfate and organic compounds adsorbed by the droplet while in the cloud.The charged evaporation nuclei become well mixed with more droplets in many types of clouds with penetrative mixing. The processes of entrainment and evaporation are also efficient for these clouds. The collection of such nuclei by nearby droplets is greatly increased by the electrical attraction between the charge on the particle and the image charge that it creates on the droplet. This process is called electroscavenging. Because the charge on the evaporation nuclei is derived from the original space charge, it depends on J z, giving a rate of electroscavenging responsive to the solar wind inputs.There may be a number of ways in which the electroscavenging has consequences for weather and climate. One possibility is enhanced production of ice. The charged evaporation nuclei have been found to be good ice forming nuclei because of their coatings, and so in supercooled clouds droplet freezing can occur by contact ice nucleation, as the evaporation nuclei are electroscavenged. Although quantitative models for the all the cloud microphysical processes that may be involved have not yet been produced, we show that for many clouds, especially those with broad droplet size distributions, relatively high droplet concentrations, and cloud top temperatures just below freezing, this process is likely to dominate over other primary ice nucleation processes. In these cases there are likely to be effects on cloud albedo and rates of sedimentation of ice, and these will depend on J z.For an increase in ice production in thin clouds such as altocumulus or stratocumulus the main effect is a decrease in albedo to incoming solar radiation, and in opacity to outgoing longwave radiation. At low latitudes the surface and troposphere heat, and at high latitudes in winter they cool. The change in meridional temperature gradient affects the rate of cyclogenesis, and the amplitude of planetary waves. For storm clouds, as in winter cyclones, the effect of increased ice formation is mainly to increase the rate of glaciation of lower level clouds by the seeder-feeder process. The increase in precipitation efficiency increases the rate of transfer of latent heat between the air mass and the surface. In most cyclones this is likely to result in intensification, producing changes in the vorticity area index as observed. Cyclone intensification also increases the amplitude of planetary waves, and shifts storm tracks, as observed.In this paper we first describe the production of space charge and the way in which it may influence the rate of ice nucleation. Then we review theory and observations of the solar wind modulation of J z, and the correlated changes in atmospheric temperature and dynamics in the troposphere. The correlations are present for each input, (A, B, and C), and the detailed patterns of responses provide support for the inferred electrical effects on the physics of clouds, affecting precipitation, temperature and dynamics.  相似文献   

14.
基于Fletcher成核理论及均质-非均质凝结双流体模型,讨论了电荷作用对凝结流动的影响,结果表明:有无电荷影响时,成核率计算公式精度均较高,流场参数的计算结果与实验结果吻合良好,相对误差不超过5%,表明所建的均质-非均质凝结双流体模型具有较高精度.不带电时,加入颗粒半径为5nm颗粒前后流场过冷度差别较小,加入颗粒半径分别为8nm和10nm颗粒后过冷度峰值虽分别降低2K和7K,但均导致自发凝结向下游迁移.当颗粒带电荷量为Q=1e,加入颗粒半径为5nm颗粒情况下对减小成核自由能障、增加非均质成核率的作用最为明显,这一作用在颗粒半径为8nm时较弱,颗粒半径为10nm情况下最弱.当带电量增加至Q=3e时,加入颗粒半径分别为5nm和8nm颗粒情况下峰值过冷度与均质凝结相比分别下降10K和6K,且较明显地抑制了自发凝结发生.   相似文献   

15.
The low temperature charge and discharge characteristics of experimental MCMB-Li/sub x/Ni/sub y/Co/sub 1-y/O/sub 2/ cells containing different electrolytes were investigated. The use of low ethylene carbonate (EC)-content electrolyte formulations has resulted in good discharge performance to temperatures as low as -40/spl deg/C. The effect of charge voltage and charge current upon the individual electrode potentials at low temperature was investigated using the three electrode cells (containing lithium reference electrodes). In some cases, lithium plating was observed to occur upon low temperature charge, and found to be facilitated by high charge voltages, high charge currents, and poor anode kinetics. Electrochemical characterization of the cells has helped to establish the conditions under which lithium plating can occur by providing information regarding the polarization effects present at each electrode.  相似文献   

16.
多晶镍基合金循环塑性细观本构关系   总被引:1,自引:1,他引:1  
基于晶体塑性的本构理论,考虑金属材料晶体细观塑性变形流动的各向异性性质及晶体滑移的非线性运动硬化,以Voronoi多晶集合体作为材料的代表性体积单元(RVE),用晶体塑性模拟描述ZSGH4169多晶镍基合金材料的细观本构关系,对ZSGH4169多晶镍基合金进行了晶粒尺度的对称和非对称循环细观分析.通过对称循环数值模拟表明:该模型适合模拟金属材料循环试验中常见的应变硬化现象和Bauschinger效应;通过非对称循环数值模拟表明该模型具有对棘轮效应的描述能力,计算中发现背应力的演化对滑移切应变率有很大的影响,滑移切应变率的数值很大程度取决于背应力演化主导的非线性硬化过程.   相似文献   

17.
The synthesis of an inverter sine wave output voltage by a staircase wave shape of low level voltage sources (cells) is accomplished by combining the cells in series at specific time intervals. Different cells of the inverter are then connected to the load for different time durations which results in unequal discharging of the cells. In order for the cells to transfer equal charge during the system operation, each voltage step should consist of a different number of cells in a parallel combination (module), the number of which depends on the time along the wave shape. The number of cells in each module is determined from the circuit current analysis and the appropriate switching time intervals, and is performed for a resistive and an inductive load. This number depends on the number of inverter voltage steps, the cell internal resistance, and the type of the load. The proper number of cells in the modules ensures identical state of charge of the cells, and equal cell recharging, and simplifies cell inspection, maintenance, and replacement.  相似文献   

18.
Charge exchange lifetimes for ring current ions   总被引:1,自引:0,他引:1  
In applying the charge exchange mechanism to ion phenomena within the Earth's magnetosphere it is critical to the proper interpretation of observations that the charge exchange lifetimes for the ions be known as accurately as possible. Various new results have been published which significantly modify the charge exchange lifetimes which have been used in space physics research during the past decade and a half. Some of the newer results have been used in the application of the charge exchange decay mechanism but the use has been limited and for the most part incomplete. The neutral hydrogen density distribution now yields lifetimes which are shorter than previously calculated, while the functional dependence of the lifetimes on pitch angle provides for slower decay for ions mirroring off the geomagnetic equator. This review coalesces and summarizes the latest and best measurements of the physical quantities involved in the complete calculation of the charge exchange lifetime of the mirroring magnetospheric ions.  相似文献   

19.
In order to improve the deposition rate and microstructure of pyrocarbon, nickel was introduced by electroplating on carbon fibers and used as a catalyst during the deposition of pyrocarbon at 1000 C using methane as a precursor gas. The distribution of nickel catalyst and the microstructure of pyrocarbon were characterized by scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), and Raman micro-spectrometry. Results show that nano-sized nickel particles could be well distributed on carbon fibers and the pyrocarbon deposited catalytically had a smaller d002 value and a higher graphitization degree compared with that without catalyst. In addition, the deposition rate of pyrocarbon in each hour was measured.The deposition rate of pyrocarbon in the first hour was more than 10 times when carbon cloth substrates were doped with nickel catalysts as compared to the pure carbon cloths. The pyrocarbon gained by rapid deposition may include two parts, which are generation directly on the nickel catalyst and formation with the carbon nanofibers as crystal nucleus.  相似文献   

20.
用液相浸渗还原法将Ni渗入C/SiC复合材料,研究复合材料中Ni对化学气相渗透PyC过程的影响.用重量分析法研究Ni的催化作用,用扫描电子显微镜(SEM)、X射线衍射(XRD)技术分析材料的微观结构及组成.结果表明,Ni对化学气相渗透PyC具有催化作用,它加速了PyC的沉积,Ni含量为4.4%时增重率达最大值9.98%.沉积的PyC为细小颗粒聚集体.CVI过程中Ni与基体SiC反应生成Ni2Si,Ni3Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号