首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了尽可能全面剖析纤维增强整体叶环(简称叶环)的优点和结构强度问题,明确纤维增强叶环转子强度优化问题及加工制造要求,利用ANSYS有限元软件,在分析典型纤维增强叶环和特殊纤维增强整体叶盘(简称叶盘)结构的受力特性基础上,结合前期对纤维增强叶环/盘特性的认识了解,提出了纤维增强叶环/盘结构在设计使用中出现的减质、寿命、刚度和热变形不协调等结构强度问题,并分析了这些问题产生的机理,可供纤维增强转子结构设计、加工、试验和检查时参考。  相似文献   

2.
碳化硅纤维的制造   总被引:2,自引:0,他引:2  
本文介绍了用聚碳硅烷与几种高聚物的共混物经高温处理制备碳化硅纤维的研究。发现聚碳硅烷与合适的高聚物如端羟基聚丁二烯(HTPB)共混后,可以提高聚碳硅烷的强度、可纺性以及所得碳化硅纤维的强度,也可以改变碳化硅纤维的表面性能,文中对产生这些现象的原因进行了分析。共混是对聚碳硅烷和碳化硅纤维进行改性的有效方法。  相似文献   

3.
玄武岩纤维表面涂层改性研究   总被引:2,自引:0,他引:2  
采用溶胶-凝胶技术制备有机/无机纳米杂化涂层材料,通过红外光谱和原子力显微镜技术对该材料进行表征分析,结果表明合成了环氧/SiO2纳米杂化材料.采用合成的纳米杂化浆料对玄武岩纤维进行表面改性,通过纤维表面形貌、纤维复丝拉伸强度和复合材料层间剪切强度分析,研究玄武岩纤维表面涂层改性效果.试验结果表明:采用适当浓度的涂层溶液对玄武岩纤维进行表面改性可以有效的增加纤维表面粗糙度,提高纤维复丝拉伸强度,改善复合材料界面粘接强度,说明玄武岩纤维表面涂敷有机/无机纳米杂化涂层的改性方法是确实有效的.  相似文献   

4.
纤维缠绕压力容器的可靠性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
文摘运用一次二阶距(FOSM)法,对纤维缠绕复合材料压力容器进行了可靠性分析,并与传统网格理论设计法进行了对比,讨论了纤维拉伸强度、爆破压力、压力容器半径、纤维缠绕层总厚度及缠绕角的变异系数对纤维强度发挥系数和压力容器壁厚的影响。结果表明:随着各设计参数变异系数的均匀增大,纤维强度发挥系数迅速减小,压力容器壁厚迅速增大;缠绕角度和纤维拉伸强度的变异系数对它们的影响最为显著。  相似文献   

5.
通过PBO纤维复丝浸胶树脂配方研制与设计试样规格等方法,进行了PBO纤维复丝制备与可靠性研究。采用扫描电子显微镜(SEM)表征PBO表面形貌;利用X射线光电子能谱表征纤维表面与树脂配方化学特征;通过差示扫描量热法(DSC)对树脂配方进行固化动力学分析;利用动态热机械分析(DMA)对树脂配方热稳定性进行了表征;通过浇铸体力学性能分析树脂配方机械性能;通过PBO纤维复丝拉伸性能进行可靠性分析。结果表明:研制的FS-J树脂配方与PBO纤维匹配性高,浸润均匀,存储适用期长,端头补强牢固,制样周期短,复丝拉伸强度、弹性模量和延伸率数据平稳,波动性低,拉伸强度离散率3%,测试可靠性高,可保证高质量、高效率、高稳定性的进行PBO纤维力学性能评价。  相似文献   

6.
由于具有良好的综合性能,纤维金属层板在航空、航天等领域应用越来越多。但是,成形技术是限制纤维金属层板应用的主要困难之一。对纤维金属层板塑性成形技术进行了综述,分析了纤维金属层板成形性影响因素和成形过程的主要缺陷形式,介绍了国内外纤维金属层板曲面零件的成形技术进展以及近期提出的几种纤维金属层板成形新技术。最后,分析了纤维金属层板塑性成形存在的问题及瓶颈技术。  相似文献   

7.
运用XPS分析手段系统研究了Si-Ti-C-O纤维的线成及其结构,并与SiC纤维进行比较,讨论了引入Ti后纤维的组成与结构的变化及其性能的关系。  相似文献   

8.
为了全面研究碳纤维/凯夫拉纤维混合复合材料的性能,日本东丽公司系统地对不同混合配比的复合材料的抗拉强度和模量、抗压强度和模量、抗弯强度和模量以及层间剪切强度进行了测定。碳纤维采用 T300-3000-50A,凯夫拉纤维采用 Kevlar49 T968-14200,采用8H 缎纹编织,经向与纬向每25毫米各有25束,  相似文献   

9.
为检测整束氧化聚丙烯腈纤维径向异质结构发育情况,迫切需要开发一种评价聚丙烯腈纤维是否均质氧化的检测方法。本文通过树脂包埋和研磨抛光制备用于光学分析的纤维试样,应用光学显微方法对比分析了两种类型氧化聚丙烯腈纤维径向异质结构演变过程,提出了氧化聚丙烯腈纤维径向异质结构演变模型。结果表明,TG300氧化聚丙烯腈纤维呈典型的径向异质结构,TG800氧化聚丙烯腈纤维径向异质结构不明显。随着氧化反应进行,纤维直径和碳含量逐渐降低,而氧含量逐渐上升。这说明光学显微分析可以用于氧化聚丙烯腈纤维是否均质氧化评价,可为得到均质氧化聚丙烯腈纤维提供分析检测手段。  相似文献   

10.
纤维稳定缠绕研究   总被引:1,自引:0,他引:1  
针对复杂型面纤维缠绕可能出现的纤维滑移现象,应用微分几何理论和力学分析方法,研究了纤维缠绕过程中滑移系数与摩擦系数的关系,得到了纤维稳定缠绕的判据;通过试验分析了影响单向预浸料摩擦系数的因素,为复杂型面纤维稳定缠绕奠定了基础.  相似文献   

11.
对纤维缠绕球形贮箱在外压、内压和温差等作用下,进行应力、变形和稳定性等结构刚度分析。结果表明,与金属材料贮箱相比,纤维缠绕球形贮箱具有显著的刚度约束条件,如临界卸载内压和临界温差等。纤维缠绕球形贮箱在按强度要求进行结构设计和分析的基础上,还需校核刚度约束条件。为此,提出了纤维缠绕球形贮箱结构稳定性的各类临界载荷包括外压、卸载内压和温差等的计算公式及判据,为结构方案设计和研制的试验提供参考。  相似文献   

12.
对素混凝土和聚丙烯腈纤维混凝土的抗疲劳性能、弯曲韧性和抗冲击性能进行了试验研究,并分析了聚丙烯腈纤维对机场道面分类值PCV的改善效果。结果表明,掺入聚丙烯腈纤维后,混凝土各项性能指标显著提高,道面PCV值增加8.4%,大大提高了机场道面的承载能力。  相似文献   

13.
在酚醛树脂的合成过程中引入环氧氯丙烷,通过聚合反应得到改性酚醛树脂,以此为原料,采用熔融纺丝法制备出环氧氯丙烷改性酚醛纤维.通过力学性能测试及TG、GPC、FT-IR等分析表征手段对纤维的结构和性能进行了研究.结果表明:环氧氯丙烷的加入显著提高了纤维的断裂伸长率,对纤维热稳定性和残碳率的影响很不,即改性纤维仍保持了纯酚醛纤维高残碳率和高热稳定性的特点.  相似文献   

14.
几种特种纤维的热水老化及性能研究   总被引:3,自引:0,他引:3  
在25℃,50℃和96℃的热水中,对Kevlar29纤维、Kevlar49纤维和PBO纤维分别进行了吸水老化实验,测定了吸水率和拉伸断裂强度与热水老化条件(即温度和时间)的关系,通过FTIR图谱分析了纤维在吸水过程中可能发生的化学结构变化,通过SEM观察了热水老化导致的纤维表面微观形貌变化,讨论了纤维的吸水机理。  相似文献   

15.
连续纤维增强复合材料在民用航空   总被引:1,自引:0,他引:1       下载免费PDF全文
对碳纤维、芳纶纤维、碳化硅纤维和玻璃纤维等连续纤维增强的复合材料在民用航空发动机上的应用进行了概述,对连续纤维增强复合材料在风扇的转子叶片、出口导流叶片、机匣、风扇包容系统、帽罩前锥、消声板、反推装置、高压涡轮导向器和低压涡轮转子叶片等重要零件上的应用现状和发展趋势进行了归纳,指出了国内民用航空发动机应用连续纤维增强复合材料选材的发展方向。  相似文献   

16.
先对纤维增强复合材料双轴强度理论研究进行了简单的回顾,可将失效准则是否区分破坏模式 分为两类,并且比较了各强度准则的特点与存在的问题。然后对纤维增强复合材料双轴加载实验装置的发展 作了概括,对目前常用的复合材料双轴加载试样类型进行了总结分析,指出了双轴加载试样设计要求及各试样 类型的优缺点。最后,对纤维增强复合材料的双轴强度研究进行了简要评述与展望。  相似文献   

17.
芳纶纤维表面处理初探   总被引:1,自引:0,他引:1  
本文首先从理论上分析了芳纶纤维经偶联剂处理可提高界面结合力的反应机理,然后通过实验进行验证,采取了Nol环短梁剪切试验件对比试验的方法,得出了芳纶纤维经偶联剂处理比未经处理时其复合材料层间剪切强度有明显提高之结论。  相似文献   

18.
纤维缠绕复合材料弯管强度分析   总被引:2,自引:0,他引:2       下载免费PDF全文
基于ANSYS有限元分析软件,利用其中的层合板单元,对纤维缠绕复合材料弯管的强度进行分析,并进一步预测了弯管的破坏压力。通过与试验结果的对比,验证了分析模型和分析方法的有效性,为分析纤维缠绕弯管结构的强度提供了一种有效的途径。  相似文献   

19.
本文综述了当前高强高模聚酰亚胺(PI)纤维增强环氧(EP)复合材料的制备及应用研究进展,较全面地介绍了PI/EP复合材料的成型工艺性能、界面性能、力学性能及破坏机制、电性能、耐损伤性能、防弹性能等,对其应用研究方向进行了展望。  相似文献   

20.
采用聚多巴胺对聚对苯撑苯并二噁唑纤维进行表面功能化改性,借助傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、热失重分析(TGA)和扫描电镜(SEM)等手段对改性前后PBO纤维的结构进行表征,分析测试了改性前后PBO纤维和氰酸酯树脂之间的单丝拔出强度。结果表明,PDA呈膜状包覆在PBO纤维表面,改性PBO纤维与氰酸酯树脂具有更佳的界面黏结强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号