共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
温度漂移误差是制约光纤陀螺精度的重要因素之一。针对传统光纤陀螺温度补偿方法仅对温度项建模导致补偿精度差的问题,提出了一种新型多参量模型来补偿光纤陀螺温度误差的方法。通过对陀螺零漂误差和温度各相关项进行相关性分析,将温度和温度速率的乘积项及温度梯度滞后项引入到温度漂移误差模型中,建立了多参量分段补偿模型对零偏进行补偿,显著改善了光纤陀螺的零偏稳定性。使用实测光纤陀螺数据对提出的补偿方法进行实验验证,结果表明采用该方法补偿后,零偏误差平方和降低2个数量级,陀螺漂移均值、方差稳定在零点附近,补偿效果优于温度项分段拟合方法,与非线性模型预测效果相当。 相似文献
3.
为了提高光纤陀螺温度补偿精度,采用Mohr理论建立了光纤环圈的热传递模型,准确分析了光纤环圈内部的温度变化和分布情况,计算得到了光纤环圈的Shupe误差。根据Shupe理论误差和陀螺仪输出的相关性分析,得到了最优的光纤环圈热传递参数。根据热传递参数建立了光纤陀螺温度补偿模型,完成了光纤陀螺的实时温度补偿,实际补偿后光纤陀螺仪变温精度提高了约3.4倍。 相似文献
4.
5.
首先,分析了温度对零偏的影响机理,并针对环境温度影响导致MEMS陀螺零位输出变化较大的问题,提出了一种基于灰色模型的温度补偿方法,即原始数据先通过灰色模型进行预处理;然后,根据灰色模型处理过的数据,建立一种补偿模型,并用该模型对测试的数据进行预测补偿。试验表明,采用该方法使陀螺零位在全温范围内稳定精度提高了一个数量级,证明了提出方法的可行性和有效性。 相似文献
6.
7.
8.
通过光纤陀螺温度试验,分析了光纤陀螺的温度特性;理论上阐述了各项温度因素对光纤陀螺零偏的影响,并采用逐步回归分析的方法建立光纤陀螺零偏的温度数学模型。通过试验验证,采用该模型对光纤陀螺进行温度漂移的补偿,可以有效提高光纤陀螺的测量精度。 相似文献
9.
电容式MEMS角速率传感器零位的全温稳定性是其实用化的最重要的技术指标之一。分析了陀螺工作原理,从传感器敏感表头的空气阻尼、谐振频率等方面分析了机械结构的温度特性,得出了在全温区内驱动力与传感器零位输出的相关性。根据对陀螺表头和接口电路的温度特性分析,设计了恒定跨导高线性度的运算放大器,实现了全温低相位偏移、低幅值偏移的接口ASIC,并在高压N阱COMS工艺下流片。通过驱动力信号对零位进行温度补偿,包含了机械结构刚度和空气热阻尼等因素的影响,理论上比单独的谐振频率补偿更准确,而且驱动力信号可直接由接口电路给出,避免复杂的采样。在-40℃60℃的温度范围内进行零位温度循环测试,驱动力幅值对零位输出进行三阶拟合补偿,补偿后全温零位温度漂移小于26.7(°)/h(1σ)。 相似文献
10.
11.
12.
13.
针对金属壳谐振陀螺的误差建模与补偿方法进行研究.首先,通过分析金属壳谐振陀螺的敏感机理,找到影响陀螺性能的误差源,建立金属壳谐振陀螺的误差模型.然后,研究陀螺的误差传播特性,对误差源进行分类,提出金属壳谐振陀螺的误差补偿方法.最后,利用试验方法对建立的误差模型和补偿方法进行验证.试验结果表明:经过补偿后的金属壳谐振陀螺在工作温度范围内(-45℃ ~55℃)零偏不稳定性降低至4.67(°)/h,全温度段线性度由0.2%降低至0.03%,随机游走为0.6982(°)/h1/2,陀螺的综合性能得到显著提升,证明了误差模型和补偿方法的有效性. 相似文献
14.
15.
光纤陀螺对温度较为敏感,输出受温度及温度变化率影响严重,在实际工作中需要对温度漂移误差进行建模补偿。传统多项式拟合方法如最小二乘法,无法很好地满足精度要求。因此,首先对光纤陀螺工作原理与温度漂移误差产生原理进行分析,得出光纤陀螺温度漂移误差特性。利用传统多项式模型对不同温度下启动的光纤陀螺进行建模补偿,得到补偿后的精度并不理想。利用新的二维插值模型对上述试验重新进行建模补偿,结果表明二维插值模型明显优于多项式模型,光纤陀螺的零偏稳定性由补偿前的0.0153(°)/h提高到0.0051(°)/h,有利于工程上应用。 相似文献
16.
17.
我国环形激光陀螺 (RLG)技术发展和应用已经取得巨大成就,作为惯导系统的核心仪表,激光陀螺的寿命很大程度上决定了惯导系统的寿命。介绍了激光陀螺组成,分析了其内部工作气压稳定性影响寿命的机理,给出了决定寿命的关键因素,提出了提高陀螺寿命的多项措施和方法,对我国激光陀螺的寿命提升具有较大的指导意义。 相似文献