首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different non- linearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Var- ious structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are dis- cussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long- endurance (HALE) and fight aircrafts are studied separately. Finally, conclusions and the chal- lenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.  相似文献   

2.
Active Aerothermoelastic Control of Hypersonic Double-wedge Lifting Surface   总被引:2,自引:0,他引:2  
Designing re-entry space vehicles and high-speed aircraft requires special attention to the nonlinear thermoelastic and aerodynamic instability of their structural components. The thermal effects are important since temperature environment brings dramatic influences on the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes and is likely to cause instability, catastrophic failure and oscillations resulting in structural failure due to fatigue. In order to understand the dynamic behaviors of these "hot" structures, a double-wedge lifting surface with combining freeplay and cubic structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order piston theory aerodynamic is used to estimate the applied nonlinear unsteady aerodynamic loads. Also considered is the loss of torsional stiffness that may be incurred by lifting surfaces subject to axial stresses induced by aerodynamic heating. The aerodynamic heating effects are estimated based on the adiabatic wall temperature due to high speed airstreams. As a recently emerging technology, the active aerothermoelastic control is aimed at providing solutions to a large number of problems involving the aeronautical/aerospace flight vehicle structures. To prevent such damaging phenomena from occurring, an application of linear and nonlinear active control methods on both flutter boundary and post-flutter behavior has been fulfilled. In this paper, modeling issues as well as numerical simulation have been presented and pertinent conclusions outlined. It is evidenced that a serious loss of torsional stiffness may induce the dynamic instability; however active control can be used to expand the flutter boundary and convert unstable limit cycle oscillations (LCO) into the stable LCO and/or to shift the transition between these two states toward higher flight Mach numbers.  相似文献   

3.
Pico-satellite Autonomous Navigation with Magnetometer and Sun Sensor Data   总被引:1,自引:0,他引:1  
This article presents a near-Earth satellite orbit estimation method for pico-satellite applications with light-weight and low-power requirements. The method provides orbit information autonomously from magnetometer and sun sensor, with an extended Kalman filter (EKF). Real-time position/velocity parameters are estimated with attitude independently from two quantities: the measured magnitude of the Earth’s magnetic field, and the measured dot product of the magnetic field vector and the sun vector. To guarantee the filter’s effectiveness, it is recommended that the sun sensor should at least have the same level of accuracy as magnetometer. Furthermore, to reduce filter’s computation expense, simplification methods in EKF’s Jacobian calculations are introduced and testified, and a polynomial model for fast magnetic field calculation is developed. With these methods, 50% of the computation expense in dynamic model propagation and 80% of the computation burden in measurement model calculation can be reduced. Tested with simulation data and compared with original magnetometer-only methods, filter achieves faster convergence and higher accuracy by 75% and 30% respectively, and the suggested simplification methods are proved to be harmless to filter’s estimation performance.  相似文献   

4.
Uncertainties denote the operators which describe data error, numerical error and model error in the mathematical methods. The study of aeroelasticity with uncertainty embedded in the subsystems, such as the uncertainty in the modeling of structures and aerodynamics, has been a hot topic in the last decades. In this paper, advances of the analysis and design in aeroelasticity with uncertainty are summarized in detail. According to the non-probabilistic or probabilistic uncer- tainty, the developments of theories, methods and experiments with application to both robust and probabilistic aeroelasticity analysis are presented, respectively. In addition, the advances in aeroelastic design considering either probabilistic or non-probabilistic uncertainties are introduced along with aeroelastic analysis. This review focuses on the robust aeroelasticity study based on the structured singular value method, namely the ~t method. It covers the numerical calculation algo- rithm of the structured singular value, uncertainty model construction, robust aeroelastic stability analysis algorithms, uncertainty level verification, and robust flutter boundary prediction in the flight test, etc. The key results and conclusions are explored. Finally, several promising problems on aeroelasticity with uncertainty are proposed for future investigation.  相似文献   

5.
Fu Li  Zhang Jun  Li Rui 《中国航空学报》2014,27(6):1544-1553
In required navigation performance(RNP), total system error(TSE) is estimated to provide a timely warning in the presence of an excessive error. In this paper, by analyzing the underlying formation mechanism, the TSE estimation is modeled as the estimation fusion of a fixed bias and a Gaussian random variable. To address the challenge of high computational load induced by the accurate numerical method, two efficient methods are proposed for real-time application, which are called the circle tangent ellipse method(CTEM) and the line tangent ellipse method(LTEM),respectively. Compared with the accurate numerical method and the traditional scalar quantity summation method(SQSM), the computational load and accuracy of these four methods are extensively analyzed. The theoretical and experimental results both show that the computing time of the LTEM is approximately equal to that of the SQSM, while it is only about 1/30 and 1/6 of that of the numerical method and the CTEM. Moreover, the estimation result of the LTEM is parallel with that of the numerical method, but is more accurate than those of the SQSM and the CTEM. It is illustrated that the LTEM is quite appropriate for real-time TSE estimation in RNP application.  相似文献   

6.
《中国航空学报》2016,(5):1273-1284
This paper is to address structural optimization problems where multiple structure cases or multiple payload cases can be considered simultaneously. Both types of optimization problems involve multiple finite element models at each iteration step, which draws high demands in opti-mization methods. Considering the common characteristic for these two types of problems, which is that the design domain keeps the same no matter what the structure cases or payload cases are, both problems can be formulated into the unified expressions. A two-level multipoint approxima-tion (TMA) method is firstly improved with the use of analytical sensitivity analysis for structural mass, and then this improved method is utilized to tackle these two types of problems. Based on the commercial finite element software MSC.Patran/Nastran, an optimization system for multiple structure cases and multiple payload cases is developed. Numerical examples are conducted to ver-ify its feasibility and efficiency, and the necessity for the simultaneous optimizations of multiple structure cases and multiple payload cases are illustrated as well.  相似文献   

7.
Development process of muzzle flows including a gun-launched missile   总被引:2,自引:0,他引:2  
Numerical investigations on the launch process of a gun-launched missile from the muzzle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme(AUSMPW+) and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of muzzle flows including a gun-launched missile are discussed in detail.This present numerical study confirms that complicated transient phenomena exist in the shortly launching stages when the gun-launched missile moves from the muzzle of a cannon to the freeflight stage. The propellant gas flows, the initial environmental ambient air flows and the moving missile mutually couple and interact. A complete structure of flow field is formed at the launching stages, including the blast wave, base shock, reflected shock, incident shock, shear layer, primary vortex ring and triple point.  相似文献   

8.
Recent developments in micro- and nano-satellites have attracted the interest of the research community worldwide. Many colleges and corporations have launched their satellites in space. Meanwhile, the space flexible probe–cone docking system for micro- and nano-satellites has become an attractive topic. In this paper, a dynamic model of a space flexible probe–cone docking system, in which the flexible beam technology is applied, is built based on the Kane method. The curves of impact force versus time are obtained by the Lagrange model, the Kane model, and the experimental method. The Lagrange model was presented in the reference and verified by both finite element simulation and experiment. The results of the three methods show good agreements on the condition that the beam flexibility and the initial relative velocity change. It is worth mentioning that the introduction of vectorial mechanics and analytical mechanics in the Kane method leads to a large reduction of differential operations and makes the modeling process much easier than that of the Lagrange method. Moreover, the influences of the beam flexibility and the initial relative velocity are discussed. It is concluded that the initial relative velocity of space docking operation should be controlled to a certain value in order to protect the docking system. a 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA BUAA.  相似文献   

9.
Recently,much attention has been paid to the reliability and vulnerability of critical infrastructure.In air traffic systems,the vulnerability analysis for airport networks can be used to guide air traffic administrations in their prioritization of the maintenance and repair of airports,as well as to avoid unnecessary disturbances in the planning of flight schedules.In this paper,the evaluation methods of airport importance and network efficiency are established.Firstly,the evaluation indices of airport importance are proposed from both the topological and functional perspectives.The topological characteristics come from the structure of airport network and the functional features stem from the traffic flow distribution taking place inside the network.Secondly,an integrated evaluation method based on fuzzy soft set theory is proposed to identify the key airports,which can fuse together importance indices over different time intervals.Thirdly,an airport network efficiency method is established for the purpose of assessing the accuracy of the evaluation method.Finally,empirical studies using real traffic data of US and China’s airport networks show that the evaluation method proposed in this paper is the most accurate.The vulnerability of US and China’s airport networks is compared.The similarities and differences between airport geography distribution and airport importance distribution are discussed here and the dynamics of airport importance is studied as well.  相似文献   

10.
The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a helicopter. However, little research has been carried on the flow control methods employed to suppress both the dynamic stall induced by a shock wave and the dynamic stall occurring at high angles of attack. The dynamic stall suppression of a rotor airfoil by Co-Flow Jet(CFJ) is nume...  相似文献   

11.
12.
在常规的翼型优化设计方法中,设计点处最优翼型的气动性能会在非设计点处有所恶化,因此有必要对翼型鲁棒性优化方法进行研究。提出一种基于卷积神经网络和多项式混沌方法的翼型鲁棒性设计方法,首先搭建基于卷积神经网络的气动力预测模型;其次采用多项式混沌方法对马赫数和攻角进行不确定度量化,构建翼型鲁棒性气动优化设计系统;最后对以 RAE2822 翼型为基准翼型的气动优化设计问题进行优化设计验证。结果表明:本文提出的翼型鲁棒性设计方法可行,优化后翼型的气动性能和鲁棒性气动优化设计效率在较宽的设计范围内都有所提升。  相似文献   

13.
赵剑  黄悦琛  李海阳  何湘粤 《航空学报》2021,42(11):524829-524829
针对垂直起降运载火箭一子级在返回着陆的过程中存在的参数不确定性,提出了一种基于非侵入式多项式混沌展开的序列优化和可靠度评估的返回轨迹不确定性优化方法。首先,建立了返回多飞行段轨迹在确定性条件下的优化模型。然后,为同时兼顾轨迹的鲁棒性和可靠性,建立了由鲁棒最优目标函数、基于可靠度的路径约束和鲁棒等式约束组成的不确定性返回轨迹优化模型。最后,基于非侵入式多项式混沌展开方法对鲁棒目标函数和等式约束进行量化处理,将原随机鲁棒优化问题转化为高维状态空间中的等价确定性优化问题;为提高路径约束的可靠度评估效率,基于非侵入式多项式混沌展开方法对最可能点法进行改进,进一步发展了序列优化和可靠度评估策略。数值仿真结果表明,所提出的不确定性优化方法具有较好的鲁棒性,可以满足工程可靠性指标要求,同时还具有较高的精度和计算效率。  相似文献   

14.
张国斌  张青斌  丰志伟  陈青全  杨涛 《航空学报》2021,42(9):224517-224517
软式空中加油过程中锥套和受油管连接处的最大约束力,可造成锥套和受油管的脱离以及受油管的断裂,甚至引发安全事故。为了研究输油过程中软管锥套组合体的动力学特性,利用ALE-ANCF输油管道模型和多体建模方法,建立了加油系统刚-柔-液耦合的多体动力学模型;为了获取参数不确定条件下对接约束力的期望范围,采用融合多项式混沌方法和动力学模型的不确定性快速分析方法,得到了不同高度下飞行速度、输油软管长度和两机相对运动速度存在不确定性时的对接约束力期望范围。数值仿真结果表明,当受油机和加油机存在相对运动时,受油管在特定截面处的最大压力、剪力和弯矩的期望值将会分别大幅提高50%、272%和772%。  相似文献   

15.
锥导乘波体构型的气动特性不确定度分析   总被引:1,自引:0,他引:1  
宋赋强  阎超  马宝峰  鞠胜军 《航空学报》2018,39(2):121519-121519
为研究锥导乘波体偏离设计条件下气动特性变化情况,采用稀疏的非嵌入式混沌多项式方法,对乘波体气动特性进行了不确定性量化及全局非线性灵敏度分析。首先,采用CATIA二次开发技术对锥导乘波体进行参数化建模;其次,在来流速度、温度、密度和迎角满足特定扰动的条件下,通过拉丁超立方试验设计生成样本,并采用CFD进行计算;最后,根据试验设计样本建立响应面,通过混沌多项式分析得到了乘波体气动力系数的不确定度。灵敏度分析结果表明,迎角在锥导乘波体的气动特性变化中起主导作用。对马赫数和压强的流场不确定性分析结果表明,气动特性变化主因是乘波体前缘处的压力泄漏,影响了上表面压力分布,导致了气动性能的改变。  相似文献   

16.
随机响应面法在结构随机响应计算中的应用   总被引:2,自引:3,他引:2  
郭秩维  白广忱 《航空动力学报》2008,23(11):2021-2025
传统的响应面方法以一般多项式逼近结构的随机响应,但这种方式并不能保证收敛性.以随机多项式为基础的随机响应面方法,可以弥补这一不足.两个数值例子和一个发动机轮盘实例来验证这一方法的有效性.结果表明:随着随机多项式次数的增加,随机响应面所得到的响应概率密度曲线愈加趋近于由蒙特卡罗方法所得到的概率密度曲线.   相似文献   

17.
为分析跨声速转子实时波动的叶顶间隙尺寸对气动性能的影响,本文对某跨声速压气机转子真实运行状态下一个稳定工况实时波动的叶顶间隙数据进行统计分析,获得了叶顶间隙尺寸的总体水平、波动幅值和概率分布形式。以跨声速压气机转子NASA Rotor 37为研究对象,采用非嵌入式混沌多项式不确定性量化方法,对100%转速下近失速和峰值效率两个工况的施加相同叶顶间隙波动对跨声速转子气动性能的影响进行了不确定性量化分析。结果表明,真实运行状态下叶顶间隙波动对气动性能的总体水平无影响,但会缩小喘振裕度3.75%;近失速工况对叶顶间隙波动更为敏感,各参数的相对波动幅值均较峰值效率工况有所增大,等熵效率受叶顶间隙波动的影响比质量流量和总压比大;近失速工况下叶顶间隙波动在叶高方向上的影响范围和强度均大于峰值效率工况,98%叶高位置处静压系数和总压损失系数最大相对波动幅值分别可达14.84%和5%。峰值效率工况下流场中的不确定性主要由叶顶泄漏流及其与激波相互作用引起;而近失速工况下流场当中的不确定性则是由激波和吸力面分离流动起主要作用。  相似文献   

18.
马驰  高丽敏  李瑞宇  李杰 《推进技术》2020,41(9):1958-1966
为分析跨声速转子实时波动的叶顶间隙尺寸对气动性能的影响,对跨声速压气机转子真实运行状态下一个稳定工况实时波动的叶顶间隙数据进行统计分析,获得了叶顶间隙尺寸的总体水平、波动幅值和概率分布形式。以跨声速压气机转子NASA Rotor 37为研究对象,采用非嵌入式混沌多项式不确定性量化方法,对100%转速下近失速和峰值效率两个工况施加相同叶顶间隙波动对跨声速转子气动性能的影响进行了不确定性量化分析。结果表明,真实运行状态下叶顶间隙波动对气动性能的总体水平无影响,但会缩小喘振裕度3.75%;近失速工况对叶顶间隙波动更为敏感,各参数的相对波动幅值均较峰值效率工况有所增大,等熵效率受叶顶间隙波动的影响比质量流量和总压比大;近失速工况下叶顶间隙波动在叶高方向上的影响范围和强度均大于峰值效率工况,98%叶高位置处静压系数和总压损失系数最大相对波动幅值分别可达14.84%和5%。峰值效率工况下流场中的不确定性主要由叶顶泄漏流及其与激波相互作用引起;而近失速工况下流场当中的不确定性则是由激波和吸力面分离流动起主要作用。  相似文献   

19.
为深入认识影响飞机结冰的不确定性及其研究方法,从自然条件结冰、冰风洞试验、数值模拟等方面,介绍了飞机结冰不确定性来源,以蒙特卡洛法、多项式混沌法和随机配置法等为例,系统分析了各种不确定性量化方法在计算能力、求解精度等方面的优劣。考虑飞机结冰不确定性量化处于起步时期,重点综述了数值模拟中结冰条件不确定性对冰形和气动特性的影响。从结合单步法和多步法确定最佳结冰时间步长来提升结冰计算精度和效率、对其他关键部件进行结冰不确定性量化从而为更精细化的防/除冰系统的设计提供支撑,以及通过建立高精度的代理模型来代替原本复杂的数值模拟系统以应对考虑多个不确定性因素共同作用所带来的计算挑战等多个方面,全面展望不确定性量化方法及其在飞机结冰应用中的发展方向。  相似文献   

20.
湍流模型系数不确定度对翼型绕流模拟的影响   总被引:2,自引:2,他引:0  
赵辉  胡星志  张健  陈江涛  马明生 《航空学报》2019,40(6):122581-122581
使用非嵌入式多项式混沌方法研究了湍流模型系数的不确定度对RAE2822跨声速翼型绕流模拟的影响。计算中关注了数值模拟的积分量(升力系数、阻力系数)和局部量(壁面压力、摩擦系数和空间马赫数分布)的不确定度量化结果。首先,从单输入变量入手,研究卡门常数的不确定度对数值模拟的影响。然后,同时考虑Spalart-Allmaras模型中9个参数的不确定度带来的影响。通过多项式混沌展开,得到系统输出对不确定输入变量的响应,由此可以得到输出的统计特性,包括平均值、方差和极值等信息。最后,在多变量不确定度量化过程中,通过Sobol指标来量化每个输入变量的不确定度对输出不确定度的贡献程度。本文计算只考虑了RAE2822跨声速翼型模拟的单一计算状态,影响规律是否可以推及其他工况和算例需要进一步检验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号