首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the enhancement in mission operations, the mission life state-of-health (SOH) trending analysis, and the post mission life plan of the FORMOSAT-2 (or FS2, Formosa satellite #2, was called ROCSAT-2, or RS2, Republic of China satellite #2, previously) during its five years mission life from 20 May 2004 to 20 May 2009. There are two payloads onboard FS2: a remote sensing instrument (RSI) with nadir ground sampling distance (GSD) of 2 m for panchromatic (PAN) and GSD of 8 m for multi-spectral (MS, 4 bands) as the primary payload, and an imager for sprite and upper atmospheric lightning (ISUAL) as the secondary payload. It was launched on 20 May 2004. The design life is 7 years while the mission life is 5 years. In other words, the end of mission life date of FS2 is 20 May 2009. Generally speaking, FS2 is still at very good condition in its SOH. Post mission life plan for FS2 consists of: the practice of orbit transfer for global coverage and better resolution, the development of gyroless attitude control, and the method for life extension. It is expected that the working life of FS2 can be extended 3–5 years.  相似文献   

2.
3.
A developed method of determination of orbital parameters allows one to estimate, along with orbit elements, some additional parameters that characterize solar radiation pressure and perturbing accelerations due to unloadings of reactiion wheels. A parameterized model of perturbing action of solar radiation pressure on the spacecraft motion is described (this model takes into account the shape, reflecting properties of surfaces, and spacecraft attitude). Some orbit determination results are presented obtained by the joint processing of radio measurements of slant range and Doppler, laser range measurements used to calibrate the radio measurements, optical observations of right ascension and declination, and telemetry data on spacecraft thrusters’ firings during an unloading of reaction wheels.  相似文献   

4.
Among the major objectives of NASA's program of space exploration is a better understanding of the origin and evolution of the solar system. Crucial to this objective is the study of comets, which are thought to be the most primitive, pristine bodies remaining in the solar system. The importance of the study of comets has led NASA to plan a mission to rendezvous with comet Tempel 2 in 1997. Critical to the understanding of comets will be measurements of the nucleus material to determine its elemental and isotopic composition, its mechanical properties, and its thermal state and properties. This paper describes a proposal for a Comet Nucleus Penetrator to accomplish these measurement goals. The Comet Nucleus Penetrator will implant instruments into the comet's nucleus beneath a probable volatile-depleted surface mantle into material more representative of the bulk composition of the nucleus.  相似文献   

5.
Fault-tolerant control (FTC) for the space-borne equipments is very important in the engineering design. This paper presents a two-layer intelligent FTC approach to handle the speed stability problem in the swing-arm system suffering from various faults in space. This approach provides the reliable FTC at the performance level, and improves the control flow error detection capability at the code level. The faults degrading the system performance are detected by the performance-based fault detection mechanism. The detected faults are categorized as the anticipated faults and unanticipated faults by the fault bank. Neural network is used as an on-line estimator to approximate the unanticipated faults. The compensation control and intelligent integral sliding mode control are employed to accommodate two types of faults at the performance level, respectively. To guarantee the reliability of the FTC at the code level, the key parts of the program codes are modified by control flow checking by software signatures (CFCSS) to detect the control flow errors caused by the single event upset. Meanwhile, some of the undetected control flow errors can be detected by the FTC at the performance level. The FTC for the anticipated fault and unanticipated fault are verified in Synopsys Saber, and the detection of control flow error is tested in the DSP controller. Simulation results demonstrate the efficiency of the novel FTC approach.  相似文献   

6.
The European Space Agency (ESA) has decided to carry out a fly-by mission to the comet Halley. The spacecraft will be launched by an ARIANE II and intercept the retrograde Halley orbit on 13 March, 1986. One group of experiments is designed to obtain data on size, mass and composition of the dust in the cometary tail. Because of the very high relative velocity during fly-by (69 km/s) laboratory experiments are necessary to develop and calibrate the experiments. These experiments are presently under way in the laboratory of the Lehrstuhl für Raumfahrttechnik of the Technische Universität München. First results have been obtained for both the Dust Impact Detection System (DIDSY) and the P?articulate Impact Analyzer (PIA). These results are compared with the theoretical models for hypervelocity impact craters. The agreement is good at impact velocities around 15 km/s.  相似文献   

7.
The Long Duration Exposure Facility (LDEF) is an experiment carrying structure, which will be transported into a near earth orbit by the Space Transportation System of the U.S.A., where it will remain for approx, one year and then be brought back to Earth. A group of experiments investigates the cosmic dust environment. This paper describes the principle of a micro-meteoroid capture-cell experiment which has been accepted for the first LDEF flight in 1984. The development of the components and the tests conducted with the prototype are discussed together with the analysis of the simulation results using a secondary ion mass spectrometer (SIMS).  相似文献   

8.
The authors present a new scientific space mission consisting of a satellite carrying a receiving- only SAR which receives the signal transmitted by the ENVISAT-1 SAR. The integration of ENVISAT-1 SAR and bistatic radar data offers an improved potentiality of surface classification, three-dimensional observation, and the opportunity of advanced scientific experiments in the field of bistatic scattering. The small satellite nominal orbit and the attitude manoeuvres are designed in order to maintain an adequate overlap between the two radar swaths along the whole orbit, taking into account the ENVISAT-1 attitude and pointing. A preliminary satellite design (2-year lifetime) is then performed to evaluate the orbit decay and to determine the appropriate orbit manoeuvres (every 4 days) to control the satellites relative phase. The numerical simulation shows that a spacecraft of about 584kg is able to meet the mission requirements.  相似文献   

9.
Starting from their FIRES proposal [1]the DLR makes a new approach in the design of a small satellite mission dedicated to hot spot detection and evaluation: the BIRD mission. The new approach is characterized by a strict design-to-cost philosophy. A two-channel infrared sensor system in combination with a Wide-Angle Optoelectronic Stereo Scanner (WAOSS) shall be the payload of a small satellite (80kg) considered for piggyback launch. So the launch is not a main cost driver as for other small satellite missions with dedicated launchers. The paper describes the mission objectives, the scientific payload, the spacecraft bus, and the mission architecture of a small satellite mission dedicated to the investigation of hot spots (forest fires, volcanic activities, burning oil wells or coal seams), of vegetation condition and changes and of clouds. The paper represents some results of a phase A study and of the progressing phase B.  相似文献   

10.
11.
The NASA Radiation Belt Storm Probes (RBSP) mission, currently in Phase B, is a two-spacecraft, Earth-orbiting mission, which will launch in 2012. The spacecraft's S-band radio frequency (RF) telecommunications subsystem has three primary functions: provide spacecraft command capability, provide spacecraft telemetry and science data return, and provide accurate Doppler data for navigation. The primary communications link to the ground is via the Johns Hopkins University Applied Physics Laboratory's (JHU/APL) 18 m dish, with secondary links to the NASA 13 m Ground Network and the Tracking and Data Relay Spacecraft System (TDRSS) in single-access mode. The on-board RF subsystem features the APL-built coherent transceiver and in-house builds of a solid-state power amplifier and conical bifilar helix broad-beam antennas. The coherent transceiver provides coherency digitally, and controls the downlink data rate and encoding within its field-programmable gate array (FPGA). The transceiver also provides a critical command decoder (CCD) function, which is used to protect against box-level upsets in the C&DH subsystem. Because RBSP is a spin-stabilized mission, the antennas must be symmetric about the spin axis. Two broad-beam antennas point along both ends of the spin axis, providing communication coverage from boresight to 70°. An RF splitter excites both antennas; therefore, the mission is designed such that no communications are required close to 90° from the spin axis due to the interferometer effect from the two antennas. To maximize the total downlink volume from the spacecraft, the CCSDS File Delivery Protocol (CFDP) has been baselined for the RBSP mission. During real-time ground contacts with the APL ground station, downlinked files are checked for errors. Handshaking between flight and ground CFDP software results in requests to retransmit only the file fragments lost due to dropouts. This allows minimization of RF link margins, thereby maximizing data rate and thus data volume.  相似文献   

12.
13.
This paper describes the attitude control schemes for the various phases such as acquisition, on-orbit, orbit maneuver, de-boost maneuvers and coast phases of the India's first recovery mission Space Capsule Recovery Experiment-I (SRE-1). During the on-orbit phase, the SRE was configured to point the negative roll axis to Sun. The attitude referencing of SRE-1 was based on dry tuned gyros with updates from the attitude determined using on-board Sun sensors and magnetometer. For attitude acquisition, attitude maneuvers and for providing the velocity corrections for de-orbiting operations; a set of eight thrusters grouped in functionally redundant blocks were used. The control scheme with thrusters was based on proportional derivative controller with a modulator. In order to ensure micro-gravity environment during the on-orbit payload operations a linear quadratic regulator (LQR) based control scheme was designed to drive an orthogonal configuration of magnetic torquers which in turn produced three-axis control torque with the interaction of Earth's magnetic field. Proportional derivative control scheme with modulator was designed to track the steering commands during the velocity reduction as well as during the coasting phase of the de-orbiting operations. A novel thruster failure detection, isolation and reconfiguration scheme implemented on-board for the de-orbiting phase is also discussed in this paper.  相似文献   

14.
The primary objective of the Proba-3 mission is to build a solar coronagraph composed of two satellites flying in close formation on a high elliptical orbit and tightly controlled at apogee. Both spacecraft will embark a low-cost GPS receiver, originally designed for low-Earth orbits, to support the mission operations and planning during the perigee passage, when the GPS constellation is visible. The paper demonstrates the possibility of extending the utilization range of the GPS-based navigation system to serve as sensor for formation acquisition and coarse formation keeping. The results presented in the paper aim at achieving an unprecedented degree of realism using a high-fidelity simulation environment with hardware-in-the-loop capabilities. A modified version of the flight-proven PRISMA navigation system, composed of two single-frequency Phoenix GPS receivers and an advanced real-time onboard navigation filter, has been retained for this analysis. For several-day long simulations, the GPS receivers are replaced by software emulation to accelerate the simulation process. Special attention has been paid to the receiver link budget and to the selection of a proper attitude profile. Overall the paper demonstrates that, despite a limited GPS tracking time, the onboard navigation filter gets enough measurements to perform a relative orbit determination accurate at the centimeter level at perigee. Afterwards, the orbit prediction performance depends mainly on the quality of the onboard modeling of the differential solar radiation pressure acting on the satellites. When not taken into account, this perturbation is responsible for relative navigation errors at apogee up to 50 m. The errors can be reduced to only 10 m if the navigation filter is able to model this disturbance with 70% fidelity.  相似文献   

15.
Kuipers A 《Acta Astronautica》1996,38(11):865-875
In 1993 four astronauts performed physiological experiments on the payload "Anthrorack" during the second German Spacelab mission D-2. The Anthrorack set-up is a Spacelab double rack developed under the management of the European Space Agency. It consists of an ECHO machine, a respiratory monitoring system (gas analyzer with flow meter), a blood centrifuge, an ergometer, a finger blood pressure device, ECG, body impedance measurement device and a respiratory inductance plethysmograph. Experiment-specific equipment was used as well. Nineteen investigators performed experiments in the cardiovascular, pulmonary, fluid-renal and nutritional physiology area. Results on central venous pressure, ocular pressure, vascular resistance, cardiac output, tissue thickness and orthostatic intolerance are presented in the cardiovascular area. In the pulmonary area first results are mentioned on O2 transport perfusion and ventilation distribution and breathing pattern. From the fluid-renal experiments, data from diuresis, sodium excretion and hormonal determinations are given. Finally results from glucose metabolism and nitrogen turnover experiments are presented.  相似文献   

16.
Reduction of flight duration after insertion till docking to the ISS is considered. In the beginning of the human flight era both the USSR and the USA used short mission profiles due to limited life support resources. A rendezvous during these missions was usually achieved in 1–5 revolutions. The short-term rendezvous were made possible by the coordinated launch profiles of both rendezvousing spacecraft, which provided specific relative position of the spacecraft or phase angle conditions. After the beginning of regular flights to the orbital stations these requirements became difficult to fulfill. That is why it was decided to transfer to 1- or 2-day rendezvous profile. The long stay of a crew in a limited habitation volume of the Soyuz-TMA spacecraft before docking to the ISS is one of the most strained parts of the flight and naturally cosmonauts wish to dock to the ISS as soon as possible. As a result of previous studies the short four-burn rendezvous mission profile with docking in a few orbits was developed. It is shown that the current capabilities of the Soyuz-FG launch vehicle and the Soyuz-TMA spacecraft are sufficient to provide for that. The first test of the short rendezvous mission during Progress cargo vehicle flight to the ISS is planned for 2012. Possible contingencies pertinent to this profile are described. In particular, in the majority of the emergency cases there is a possibility of an urgent transfer to the present 2-day rendezvous profile. Thus, the short mission will be very flexible and will not influence the ISS mission plan. Fuel consumption for the nominal and emergency cases is defined by statistical simulation of the rendezvous mission. The qualitative analysis of the short-term and current 2-day rendezvous missions is performed.  相似文献   

17.
Aerofast is the abbreviation of “aerocapture for future space transportation” and represents a project aimed at developing aerocapture techniques with regard to an interplanetary mission to Mars, in the context of the 7th Framework Program, with the financial support of the European Union. This paper describes the fundamental characteristics of the operational orbit after aerocapture for the mission of interest, as well as the related maintenance strategy. The final orbit selection depends on the desired lighting conditions, maximum revisit time of specific target regions, and feasibility of the orbit maintenance strategy. A sunsynchronous, frozen, repeating-ground-track orbit is chosen. First, the period of repetition is such that adjacent ascending node crossings (over the Mars surface) have a separation compatible with the swath of the optical payload. Secondly, the sunsynchronism condition ensures that a given latitude is periodically visited at the same local time, which condition is essential for comparing images of the same region at different epochs. Lastly, the fulfillment of the frozen condition guarantees improved orbit stability with respect to perturbations due to the zonal harmonics of Mars gravitational field. These three fundamental features of the operational orbit lead to determining its mean orbital elements. The evaluation of short and long period effects (e.g., those due to the sectorial harmonics of the gravitational field or to the aerodynamic drag) requires the determination of the osculating orbital elements at an initial reference time. This research describes a simple and accurate approach that leads to numerically determining these initial values, without employing complicated analytical developments. Numerical simulations demonstrate the long-period stability of the orbit when a significant number of harmonics of the gravitational field are taken into account. However, aerodynamic drag produces a relatively slow orbital decay at the altitudes considered for the mission. This circumstance implies the progressive loss of the sunsynchronism condition, and therefore corrective maneuvers are to be performed. This work proves that actually only in-plane maneuvers are necessary, evaluates the overall delta-v budget needed in the period of repetition (85 Martian nodal days), and proposes a simple maintenance strategy, making reference to the worst-case scenario, which corresponds to the highest seasonal values of the atmospheric density and to the maximum value of the ballistic coefficient of the spacecraft.  相似文献   

18.
19.
20.
The Apophis Exploratory and Mitigation Platform (AEMP) concept was developed as a prototype mission to explore and potentially deflect the Near Earth Asteroid (NEA) 99942 Apophis. Deflection of the asteroid from the potential 2036 impact will be achieved using a gravity tractor technique, while a permanent deflection, eliminating future threats, will be imparted using a novel albedo manipulation technique. This mission will serve as an archetypal template for future missions to small NEAs and could be adapted to mitigate the threat of collision with other potential Earth-crossing objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号