首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
行星着陆探测中的动力学与控制研究进展   总被引:3,自引:0,他引:3  
着陆探测是获取行星特性和科学数据最直接、最有效的途径,也是目前技术难度最大、最为复杂的探测方式。在行星着陆探测过程中,动力学与控制是影响任务成败的关键因素之一。文章首先分析了行星着陆探测动力学与控制研究所面临的挑战与难题;然后,针对火星和小行星的着陆探测,重点分析了火星着陆进入段和下降段所涉及的动力学与控制,小行星附着探测动力学建模与制导控制的研究现状与关键问题;最后,提出了我国在行星着陆探测动力学与控制领域的未来重点发展方向。  相似文献   

2.
NASA's plans for future human exploration of the Solar System describe only missions to Mars. Before such missions can be initiated, much study remains to be done in technology development, mission operations and human performance. While, for example, technology validation and operational experience could be gained in the context of lunar exploration missions, a NASA lunar program is seen as a competitor to a Mars mission rather than a step towards it. The recently characterized weak stability boundary in the Earth–Moon gravitational field may provide an operational approach to all types of planetary exploration, and infrastructure developed for a gateway to the Solar System may be a programmatic solution for exploration that avoids the fractious bickering between Mars and Moon advocates. This viewpoint proposes utilizing the concept of Greater Earth to educate policy makers, opinion makers and the public about these subtle attributes of our space neighborhood.  相似文献   

3.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

4.
基于国际上成功着陆的火星探测任务和未来火星着陆探测技术的发展需求,阐述了火星进入段自主导航的必要性。首先总结了火星进入段自主导航技术的研究现状与发展趋势,随后分析了火星进入段自主导航的特点以及所面临的挑战,并概括了火星进入段自主导航所涉及的关键技术。最后对我国未来火星探测任务进入段的自主导航技术发展方向进行了展望。  相似文献   

5.
掌握火星土壤的力学参数是保障火星车顺利完成巡视探测的关键。通过对已成功开展的火星巡视探测任务进行汇总,探讨了复杂火星地貌对火星车移动性能的影响,分析了基于地面力学理论的火星土壤力学参数估计方法,包括:基于车轮的火星壤在轨力学参数估计方法和基于轮壤力学模型的力学参数辨识方法。最后,对未来关于地面力学在星壤力学参数评估进行了探讨。  相似文献   

6.
Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars.  相似文献   

7.
The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5?m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2?m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5?g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260?g kg(-1)) and perchlorate (41.13?μg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14?μg g(-1)) or formate (76.06?μg g(-1)) as electron donors, and sulfate (15875?μg g(-1)), nitrate (13490?μg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.  相似文献   

8.
The increasing robotic exploration of Mars and eventual human exploration and settlement of that planet threatens to have a significant environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with micro-organisms and spacecraft parts. By definition, the sites that we might wish to preserve are likely to be those to which robots and humans will be sent. An interventionist step to protect pristine regions of Mars with the formation of a Planetary Park system is proposed. Possible locations for the first seven Planetary Parks are suggested. Landing of unmanned craft in these parks would be forbidden. Although global dust storms can carry microorganisms across the planetary surface, the regulations suggested for these parks will allow for the maximum level of preservation. We also suggest that the Planetary Park system could be applied to the Moon.  相似文献   

9.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   

10.
文章概括介绍了"发现号"宇宙飞船的布局结构。然后详细介绍了飞船用于火星探测的两种着陆舱的具体设计方案以及载人火星探测的任务剖面。最后分析了"发现号"宇宙飞船火星探测方案的关键可行技术和诸多设计优点。  相似文献   

11.
This article presents a plan for reconfiguring the US-international Space Station, which could be used to undertake exploration of Mars. The author believes that there is an urgent need to give a unified purpose to the US Shuttle, Space Station and space science activities, and that planning for an international Mars sample return mission along the lines outlined here could start the US space programme moving again within budgetary requirements.  相似文献   

12.
火星着陆探测任务环节多、复杂度高、环境不确定性大,历史成功率低于50%.日前我国首次自主火星探测任务"天问一号"已取得圆满成功,在世界上首次一步实现"绕、落、巡"的火星探测.文章对火星着陆探测任务中考虑的火星环境要素及其量化条件的确定过程进行阐述,包括:探测器系统对环境条件的需求,基于此对火星空间环境、大气环境、表面环...  相似文献   

13.
The planned exploration of Mars will pose new and unique telecommunications and navigation challenges. The full range of orbital, atmospheric, and surface exploration will drive requirements on data return, energy-efficient communications, connectivity, and positioning. In this paper we will summarize the needs of the currently planned Mars exploration mission set, outline design trades and options for meeting these needs, and quantify the specific telecommunications and navigation capabilities of an evolving infrastructure.  相似文献   

14.
We compare a variety of mission scenarios to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. We examine direct, semi-direct, stop-over, semi-cycler, and cycler architectures, and we include electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems in our technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. Many different combinations of technologies and architectures are applied to the same Mars mission to determine which combinations provide the greatest potential reduction in the injected mass to LEO. We approximate the technology readiness level of a mission to rank development risk, but omit development cost and time calculations in our assessment. It is found that Earth–Mars semi-cyclers and cyclers require the least injected mass to LEO of any architecture and that the discovery of accessible water on Mars has the most dramatic effect on the evolution of Mars exploration.  相似文献   

15.
杨彬  唐生勇  李爽  夏陈超 《宇航学报》2018,39(11):1197-1208
针对载人火星探测任务,结合我国现有技术基础,提出我国载人火星探测方案,重点研究载人火星探测任务推进系统的设计。首先,综合考虑载人深空探测任务的约束,采用Pork-Chop图设计了适用于不同任务场景的转移轨迹;然后,参考我国空间站技术,基于核热推进系统设计了我国载人火星探测任务的飞船;最后,对核热推进系统的发动机台数和推力进行了优化,得到了适用于不同任务场景的最优推进系统组合方案。本文所研究内容为我国未来载人火星探测任务提供了有益参考。  相似文献   

16.
Landis GA 《Acta Astronautica》2004,55(12):985-990
How will humans and robots cooperate in future planetary exploration? Are humans and robots fundamentally separate modes of exploration, or can humans and robots work together to synergistically explore the solar system? It is proposed that humans and robots can work together in exploring the planets by use of telerobotic operation to expand the function and usefulness of human explorers, and to extend the range of human exploration to hostile environments.  相似文献   

17.
基于萤火一号技术的自主火星探测器方案   总被引:1,自引:0,他引:1  
提出了基于萤火一号(YH-1)火星探测器技术的自主火星探测器方案,可携带多种有效载荷在准太阳同步圆轨道上对火星进行科学探测。该方案具有可实现性强、成本低、研制周期短等特点,并能满足火星探测后续工程中的环绕器设计要求,利于我国火星探测的长远发展。利用长征三号乙运载火箭,在西昌卫星发射中心就可实现2013/2016年的我国自主火星探测。  相似文献   

18.
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110?nm) as well as the martian UV spectrum (λ≥200?nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.  相似文献   

19.
火星精确着陆制导问题分析与展望   总被引:6,自引:0,他引:6  
美国火星科学实验室(MSL)任务成功将“好奇”号火星车着陆到火星表面,开创了火星精确着陆探测的新局面。以MSL着陆任务为典型代表,分析了目前火星着陆探测进入、下降和着陆(Entry, Descent and Landing, EDL)过程的制导方案及制导系统的发展趋势。以在火星高海拔、复杂地形区域定点着陆为潜在工程目标,归纳了火星EDL过程面临的制导主要问题。根据未来制导系统自主性和自适应性的技术需求及潜在工程任务制导面临的问题,提出了火星EDL制导方面需要解决的关键技术,并对其在未来工程中的应用潜力进行了展望。  相似文献   

20.
《Acta Astronautica》1999,44(2-4):117-122
Launch weight and volume requirements are substantially decreased by reduction of probe size in exploration mission systems, as mass and volume both scale as the third power of system size. Accordingly, the already quite developed MEMS (Micro Electro Mechanical System) technology, that offers low cost, small, light weight, and increasingly reliable devices through durability and redundancy, is strongly attractive as a near-term technology for significantly reducing the cost to launch and operate space systems. It is shown that the final goal of MEMS technology, i.e. the merging through solid state microdcvices of the functions of sensing, computation, communication and actuation, can lead to a new, biomimetic kind of miniature robotics, particularly suitable for planetary exploration, through molecular mono- electronics/MEMS integration jointly with a hyper-interspersed architecture made up of autonomous units embodying sensors, information processors and actuators. The problem tackled here concerns the basic design of such miniature robots, from some μm to insect size, featuring finely structured intelligent autonomous parts as smart skins, sensory and manipulating members working on the analogue external reality and communicating with their inner molecular level nondiscrete pseudo-analogue information processing networks. The (mesoscopic network)/MEMS units are shown to embody a quantum mechanical/macroscopic world connection, in which the nondiscrete molecular devices allow the automaton parts to perform very complex, fast information processing operations as metaphores of bionic functions like learning, attention, and decision making under uncertain conditions, this last due to the stochasticity inherent in the quantum network. Flexible architectures instead of von Neumann type rigid architectures in addition to hyper-interspersion of autonomous units can be realized through such nano/MEMS devices, and the μm — cm size of the whole robots and their organs allow dynamic biochemical, possibly reaction - diffusion, spatially separated highly nonlinear systems to be exploited as additional primitive computing devices (e.g. chemical oscillators, dissipative biomolecular distributed systems, planar photoactivated enzyme biosensors). Each interspersed unit can be designed as a multilevel nondiscrete system according to the information processing “rank” to be obtained in simulating the biological nervous system activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号