首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

2.
基于星务管理系统的小卫星自主健康管理系统   总被引:1,自引:0,他引:1  
为了适应小卫星电子信息系统的快速发展,使卫星能够自行规划工作流程,实现在轨自主管理,需要构建合理有效的小卫星自主健康管理系统。文章以星务管理系统为基础,针对目前健康管理中存在的问题,构建了一套小卫星自主健康管理系统。它包括整星级、系统级和部件级3个层面。设计了自主健康管理执行模块构成整星级层面,其中包括自主健康管理规则库和自主健康管理任务执行模块。文章提出的小卫星自主健康管理系统,可以提高小卫星自主诊断、自主运行能力,最终实现小卫星长寿命、安全可靠运行。  相似文献   

3.
This paper proposes the application of a nonlinear control technique for coupled orbital and attitude relative motion of formation flying. Recently, mission concepts based on the formations of spacecraft that require an increased performance level for in-space maneuvers and operations, have been proposed. In order to guarantee the required performance level, those missions will be characterized by very low inter-satellite distance and demanding relative pointing requirements. Therefore, an autonomous control with high accuracy will be required, both for the control of relative distance and relative attitude. The control system proposed in this work is based on the solution of the State-Dependent Riccati Equation (SDRE), which is one of the more promising nonlinear techniques for regulating nonlinear systems in all the major branches of engineering. The coupling of the relative orbital and attitude motion is obtained considering the same set of thrusters for the control of both orbital and attitude relative dynamics. In addition, the SDRE algorithm is implemented with a timing update strategy both for the controller and the proposed nonlinear filter. The proposed control system approach has been applied to the design of a nonlinear controller for an up-to-date formation mission, which is ESA Proba-3. Numerical simulations considering a tracking signal for both orbital and attitude relative maneuver during an operative orbit of the mission are presented.  相似文献   

4.
基于有向图模型的卫星任务指令生成算法   总被引:1,自引:1,他引:0  
面向任务的卫星操控模式具有操作简便、星载资源使用效率高的优点,正在取代指令序列注入成为遥感卫星运控的新模式。文章提出一种基于有向图模型的遥感卫星任务指令序列生成算法,具有线性存储复杂度和计算复杂度,适合存储资源和计算资源受限的星载计算机应用。此算法已在某遥感卫星应用,测试试验表明,采用3个面向任务的高级指令即可生成52种指令序列,任务上行注入效率提升了5倍。本文方法根据有效载荷的使用约束条件,配置有向图模型参数,即可满足各种类型卫星使用。  相似文献   

5.
基于有效准则矢量生成的成像调度方法   总被引:3,自引:0,他引:3  
张帆  李军  王钧  景宁 《航天控制》2005,23(6):81-84
进行高效成像调度是卫星控制的一项重要任务。通过将成像需求序列对应为有向图中的成像路径,结合成像调度问题特点,基于多个优化准则使用支配关系对成像路径质量进行综合评价,提出有效准则矢量生成算法。利用成像有向图的拓扑特性,基于时间顺序顶点选择策略进行顶点标记更新,生成出有向图中所有的有效准则矢量及每个准则矢量对应的一条Pareto优化路径。实验结果表明,获得的有效准则矢量数目小,算法可以在较短时间内得到多条具有代表性的优化成像路径,满足卫星成像调度的时间和性能要求。  相似文献   

6.
The navigation constellation will have the capability of supporting Tracking Telemetry and Command (TT&C) operations by inter-satellite link (ISL). The ISL will become an important solution to reduce the shortage of ground TT&C resources. The problems need to be studied urgently in the field of space TT&C network resources scheduling management are how to determine the availability of ISL and how to allocate TT&C resources of ISL. The performance and scheduling constraints of navigation constellation?s ISL are analyzed, and three utilization strategies of ISL to perform TT&C operations are proposed. The allocation of TT&C resources based on ISL falls into two successive phases. Firstly, master satellite determination equation is established by using 0–1 Programming model based on the availability matrix. Mathematical method is used to solve the equation to determine the master satellite and the topology of ISL. Secondly, Constraint Programming (CP) model is used to describe the ground TT&C resources scheduling problem with special requirements of TT&C operations based on master satellite, and a heuristic algorithm is designed to solve the CP model. The equations and algorithm are verified by simulation examples. The algorithm of TT&C resources scheduling based on ISL has realized the synthesized usage of both the ISL and ground resources on TT&C field. This algorithm can improve TT&C supports of territorial ground TT&C network for global navigation constellation, and provides technical reference for the TT&C mission planning of global constellation by using ISL.  相似文献   

7.
结合多波束低轨(multi-beam low earth orbit, MB-LEO)卫星通信场景,研究了一种多目标载波功率联合优化(joint subcarrier scheduling and power control resource allocation, JSSPC-RA)算法。通过求解整数混合规划非凸优化问题,得到了不同通信需求下MC-DS-CDMA子载波和子载波功率的联合调度方案,实现了系统用户未满足容量和卫星总功耗的最小化。仿真结果表明,相对于传统的载波功率均分策略,JSSPC-RA算法能够在满足系统吞吐量需求的前提下大幅节省卫星总功耗;同时,通过调节权值系数,JSSPC-RA算法可以生成用户吞吐量需求与卫星总能耗折中的系统设计方案,适用于频谱、能量资源高度受限的MB-LEO卫星系统。  相似文献   

8.
Japan Aerospace Exploration Agency has a plan to develop the small satellite standard bus for various scientific missions and disaster monitoring missions. The satellite bus is a class of 250–400 kg mass with three-axis control capability of 0.02 accuracy. The science missions include X-ray astronomy missions, planetary telescope missions, and magnetosphere atmosphere missions. In order to adapt the wide range of mission requirements, the satellite bus has to be provided with flexibility. The concepts of modularization, reusability, and product line are applied to the standard bus system. This paper describes the characteristics of the small satellite standard bus which will be firstly launched in 2011.  相似文献   

9.
甘岚  龚胜平 《宇航学报》2021,42(2):185-191
针对太阳同步圆轨道卫星星座对地观测任务,研究了在卫星机动情况下对多区域目标的成像任务规划算法.首先提出了单颗卫星对单个点目标的观测方法,解析分析了点目标可见性,并给出了卫星变轨策略;进而通过把区域目标划分为多个条带,将问题转化为卫星对点目标观测问题,结合单星单目标观测方法分析区域目标各条带的可见性;最后建立优化问题模型...  相似文献   

10.
王海蛟  贺欢  杨震 《宇航学报》2018,39(11):1266-1274
针对敏捷成像卫星调度问题中解空间大,选择任务的搜索空间和确定任务观测时间的搜索空间分别是离散域和连续域的难题。建立了多种决策变量混合的敏捷成像卫星调度模型,提出一种改进的量子遗传算法对其求解,改进的量子遗传算法采用二进制与实数杂合的编码方式,降低染色体的基因位编码数目,提高了搜索效率,有效适应了敏捷成像卫星调度问题中离散与连续混合的解空间;以杂合编码为基础,设计对应的观测函数将敏捷成像卫星调度问题的解映射到相位空间,从而将量子优化机制引入敏捷成像卫星调度问题中,利用量子遗传算法在相位空间搜索的特性解决敏捷成像卫星解空间大、解空间离散与连续并存的问题。最后,通过不同规模的仿真校验对算法的调度效果进行测试和分析。结果表明,所提改进的量子遗传算法在收敛速度和方案收益方面都有较好的表现,能够满足敏捷成像卫星调度的需要。  相似文献   

11.
针对多成像卫星联合调度规划建模难度大和求解复杂度高等问题,通过分析成像卫星的成像过程和工作原理,将成像卫星调度过程分为调度预处理、任务规划和调度优化3个阶段。在调度规划过程中,建立了多星联合调度约束满足最优化模型,采用启发式算法思想,定义了个体适应度评估函数,设计了任务冲突消解方法,提出了一种改进的差分进化算法。在此基础上,采用一些确定性规则对调度规划方案可行解进行了评估和二次优化。结果表明:提出的成像卫星调度问题求解方法能够有效地分配卫星资源,生成优化的调度方案。设计结果也能够为卫星系统最优化设计和效能评估提供必要的决策支持。  相似文献   

12.
Earth remote sensing (alongside communications) is one of the key application of Earth-orbiting satellites. Civilian satellites in the LANDSAT and SPOT series provide Earth images which have been used for a vast spectrum of applications in agriculture, meteorology, hydrology, urban planning and geology, to name but a few. In the defence sector, satellite remote sensing systems are a critical tool in strategic and tactical planning – for the countries which can afford them. To date, remote sensing satellites have fallen into one of these two categories: military missions driven by the requirement for very high resolution and orbital agility; and multipurpose civil satellites using general purpose sensors to serve a diverse community of end users. For military-style missions, the drive to high resolution sets the requirements for optics, attitude control and downlink data bandwidth. For civil missions, the requirement to satisfy multiple, diverse user applications forces compromises on spectral band and orbit selection. Although there are exceptions, many small satellite remote sensing missions carry on in this tradition, concentrating on ultra high resolution products for multiple user communities. This results in satellites costing on the order of US $100 M, not optimised for any particular application. This paper explores an alternative path to satellite remote sensing, aiming simultaneously to reduce cost and to optimise imaging products for specific applications. By decreasing the cost of the remote sensing satellite system to a critical point, it becomes appropriate to optimise the sensor's spectral and temporal characteristics to fit the requirements of a small, specialised user base. The critical engineering trade-off faced in a cost driven mission is how to reduce mission cost while still delivering a useful product to the selected user. At the Surrey Space Centre, we have pursued an engineering path using two dimensional CCD array sensors, commercial off-the-shelf lenses and gravity-gradient stabilised microsatellites. In spite of the inherent limitations of such systems, recent successes with the Thai Microsatellite Company's Thai-Phutt satellite show that a system costing in the region of US $3 million, can approach the spectral and spatial characteristics of LANDSAT. Surrey's UoSAT-12 minisatellite (to be launched April, 1999) will further develop this cost-driven approach to provide 10 m panchromatic resolution and 30 m multi-spectral resolution. This paper describes the Thai-Phutt and UoSAT-12 imaging systems, explaining the engineering methods and trade-offs. Although Surrey is presently the only centre presently pursuing such implementations, our paper shows that they deserve wider consideration.  相似文献   

13.
The French Space Agency (CNES) is currently operating thirteen satellites among which five remote sensing satellites. This fleet is composed of two civilian (SPOT) and three military (HELIOS) satellites and it has been recently completed by the first PLEIADES satellite which is devoted to both civil and military purposes. The CNES operation board decided to appoint a Working Group (WG) in order to anticipate and tackle issues related to the emergency End Of Life (EOL) operations due to unexpected on-board events affecting the satellite. This is of particular interest in the context of the French Law on Space Operations (LSO), entered in force on Dec. 2010, which states that any satellite operator must demonstrate its capability to control the space vehicle whatever the mission phase from the launch up to the EOL. Indeed, after several years in orbit the satellites may be affected by on-board anomalies which could damage the implementation of EOL operations, i.e. orbital manoeuvres or platform disposal. Even if automatic recovery actions ensure autonomous reconfigurations on redundant equipment, i.e. setting for instance the satellite into a safe mode, it is crucial to anticipate the consequences of failures of every equipment and functions necessary for the EOL operations. For this purpose, the WG has focused on each potential anomaly by analysing: its emergency level, as well as the EOL operations potentially inhibited by the failure and the needs of on-board software workarounds… The main contribution of the WG consisted in identifying a particular satellite configuration called “minimal Withdrawal From Service (WFS) configuration”. This configuration corresponds to an operational status which involves a redundancy necessary for the EOL operations. Therefore as soon as a satellite reaches this state, a dedicated steering committee is activated and decides of the future of the satellite with respect to three options: a/. the satellite is considered safe and can continue its mission using the redundancy, b/. the EOL operations must be planned within a mid-term period, or c/. the EOL operations must be implemented as soon as possible by the operational teams. The paper describes this management and operational process illustrated with study cases of failures on SPOT and PLEIADES satellites corresponding to various emergency situations.  相似文献   

14.
Aerobraking has previously been used to reduce the propellant required to deliver an orbiter to its desired final orbit. In principle, aerobraking should be possible around any target planet or moon having sufficient atmosphere to permit atmospheric drag to provide a portion of the mission ΔV, in lieu of supplying all of the required ΔV propulsively. The spacecraft is flown through the upper atmosphere of the target using multiple passes, ensuring that the dynamic pressure and thermal loads remain within the spacecraft's design parameters. NASA has successfully conducted aerobraking operations four times, once at Venus and three times at Mars. While aerobraking reduces the fuel required, it does so at the expense of time (typically 3–6 months), continuous Deep Space Network (DSN) coverage, and a large ground staff. These factors can result in aerobraking being a very expensive operational phase of the mission. However, aerobraking has matured to the point that much of the daily operation could potentially be performed autonomously onboard the spacecraft, thereby reducing the required ground support and attendant aerobraking related costs. To facilitate a lower-risk transition from ground processing to an autonomous capability, the NASA Engineering and Safety Center (NESC) has assembled a team of experts in aerobraking and interplanetary guidance and control to develop a high-fidelity, flight-like simulation. This simulation will be used to demonstrate the overall feasibility while exploring the potential for staff and DSN coverage reductions that autonomous aerobraking might provide. This paper reviews the various elements of autonomous aerobraking and presents an overview of the various models and algorithms that must be transformed from the current ground processing methodology to a flight-like environment. Additionally the high-fidelity flight software test bed, being developed from models used in a recent interplanetary mission, will be summarized.  相似文献   

15.
无人机任务规划系统研究及发展   总被引:2,自引:0,他引:2  
胡中华  赵敏 《航天电子对抗》2009,25(4):49-51,54
无人机任务规划系统是指根据所要完成的任务、无人机的数量及任务载荷的不同,对各架无人机进行任务分配并通过航路规划技术制定飞行路线。首先介绍了无人机任务规划系统的基本功能及组成结构。然后,详细分析了任务规划系统的建模技术及其优化算法的研究现状。最后指出了讨论了无人机任务规划存在的问题,并阐述了无人机任务规划系统的发展趋势。  相似文献   

16.
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3–4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.  相似文献   

17.
SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.  相似文献   

18.
With a maximum time of 12 days out of ground contact and a round-trip light time as high as 56 minutes, The Near Earth Asteroid Rendezvous (NEAR) spacecraft requires a moderate degree of onboard autonomy to react to faults and safe the spacecraft. Beyond the basic safing requirements, additional functions are carried out onboard. For example, on-board calculation of the Sun, Earth, asteroid, and spacecraft positions allow the spacecraft to autonomously orient itself for science and downlink operations. On-board autonomous momentum management during cruise relieves Mission Operations from planning, scheduling, and carrying out many manual momentum dumps. During development, additional operations, such as center-of-mass management during propulsive maneuvers and optical navigation were also considered for onboard autonomy on the NEAR spacecraft, but were not selected. The allocation of functions to onboard software or to ground operations involved tradeoffs such as development time for onboard software versus ground software, resource management, life cycle costs, and spacecraft safety.After two years of cruise operations, considerable experience with the NEAR autonomy system has accrued. The utility of some autonomous capabilities is greater than expected, others less so. Software uploads increased spacecraft autonomy in some cases, and the impact on Mission Operations can be assessed. Allocation of functions between spacecraft autonomy and ground operation during development of future missions can be improved by applying the lessons learned from the NEAR experience.  相似文献   

19.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   

20.
范丽  张育林 《宇航学报》2006,27(4):779-782,797
针对星座构形一体化设计时,由于约束条件复杂而导致求解困难的问题,提出了自适应序列约束边界法和约束邻域排斥策略,以进化算法为基础构成了星座构形一体化优化设计方法。应用此方法进行了全球导航星座构形一体化优化设计,设计结果表明该方法能够高效解决综合考虑多种设计因素、具有离散/连续混合变量、无导数信息的星座构形一体化优化设计问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号