首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of clinostat-simulated microgravity on SP-2/0 and 1D6 hybridoma cells was studied. Clinorotation during 4-5 days at 1.5 rounds per minute decreased dramatically their proliferating capacity: the rotated cells divided less than once while control cells performed 4-5 divisions. They decreased the non-specific adhesion to tissue culture plastic, but increased the number of cell-to-cell contacts. Such phenomenological changes were accompanied with the alterations in pericellular glycosaminoglycans: decreased accumulation of hyaluronic acid and increased accumulation of chondroitin/dermatan-sulfate, as well as with the increase of cytoplasmic Ca2+ concentration. Clinorotation resulted in hybridoma nicotinic receptor desensitization but not down-regulation. In contrast, both the quantity and quality (molecular isoforms, affinity and specificity) of the antibody produced by 1D6 hybridoma cells were not altered by clinorotation. It is concluded that simulated microgravity affected the proliferating and adhesive, but not biosynthetic properties of hybridoma cells.  相似文献   

2.
Cell-to-cell interactions play an important role in all physiological processes and are mediated by humoral and mechanical factors. Mechanosensitive cells (e.g., osteocytes, chondrocytes, and fibroblasts) can be studied ex vivo to understand the effects of an altered gravity environment. In particular, cultured endothelial cells (EC) are very sensitive to a broad spectrum of mechanical and biochemical stimuli. Earlier, we demonstrated that clinorotation leads to cytoskeletal remodeling in cultured ECs. Long-term gravity vector changes also modulate the expression of surface adhesion molecules (ICAM-1, E-selectin, VCAM-1) on cultured ECs. To study the interactions of geterological cells, we cocultured endothelial monolayers and human lymphocytes, immune cells and myeloleucemic (K-560) cells. It was found that, although clinorotation did not alter the basal adhesion level of non-activated immune cells on endothelial monolayers, the adhesion of PMA-activated lymphocytes was increased. During flight experiments onboard the Russian segment of the International Space Station, we measured the cytotoxic activity of natural killer (NK) cells incubated with labeled target cells. It was found that immune cells in microgravity retained their ability to contact, recognize, and destroy oncogenic cells in vitro. Together, our data concerning the effects of simulated and real microgravity suggest that, despite changes in the cytoskeleton, cell motility, and expression of adhesion molecules, cell-cell interactions are not compromised, thus preserving the critical physiological functions of immune and endothelial cells.  相似文献   

3.
4.
This study investigates the effects of microgravity on colony growth and the morphological transition from single cells to short invasive filaments in the model eukaryotic organism Saccharomyces cerevisiae. Two-dimensional spreading of the yeast colonies grown on semi-solid agar medium was reduced under microgravity in the Σ1278b laboratory strain but not in the CMBSESA1 industrial strain. This was supported by the Σ1278b proteome map under microgravity conditions, which revealed upregulation of proteins linked to anaerobic conditions. The Σ1278b strain showed a reduced invasive growth in the center of the yeast colony. Bud scar distribution was slightly affected, with a switch toward more random budding. Together, microgravity conditions disturb spatially programmed budding patterns and generate strain-dependent growth differences in yeast colonies on semi-solid medium.  相似文献   

5.
6.
Single cells and cell culture are very good model for estimation of primary effects of gravitational changes. It is suggested that cell cytoskeleton plays a key role in mechanisms of adaptation to mechanical influences including gravitational ones. Our results demonstrated that cultured cells of human vascular endothelium (correction of endotheliun) are highly sensitive to hypogravity (clinorotation) and respond by significant decrease of cell proliferative activity. Simultaneously it was noted that the formation of confluent monolayer appeared early in cultures exposed to simulated microgravity due to accelerated cells spreading. Long-term hypogravity (several hours or days) leads to significant changes of cell cytoskeleton revealed as microfilament thinning and their redistribution within cell. Such changes were observed only in monolayer cells and not in cell suspensions. Gravitational forces as known to be modificators of cell adhesive ability and determine their mobility. Hypogravity environment stimulated endothelial cell migration in culture: 24-48 hrs pre-exposition to hypogravity significantly increased endothelial cell migration resulting in 2-3-fold acceleration of mechanically injured monolayer repair. Obtained results suggest that the effects of hypogravity on cultured human endothelial cells are, possibly, associated with protein kinase C and/or adenylate cyclase activity and are accompanied by noticeable functional cell changes.  相似文献   

7.
Mouse calvarial cells grown under simulated microgravity conditions (neutral buoyancy) show preferential differentiation towards the osteoclast lineage, as defined by surrogate mRNAs, bone nodule growth and TRAP+ cells, when compared with cells cultured under normal gravity conditions. This effect was suppressed in cultures which contained the immunoregulatory molecule CD200, and conversely enhanced by anti-CD200 mAb. Concomitant increases occur in expression of inflammatory cytokines, and their mRNAs, under simulated microgravity conditions. Again cultures containing exogenous CD200 showed suppressed cytokine and cytokine mRNA expression. Further alterations in osteoclastogenesis were seen using cells isolated from cytokine-receptor knockout mice. We conclude that, as assessed by altered expression of mRNAs associated with osteoblast differentiation, CD200:CD200R interactions play an important regulatory role in the enhanced osteoclastogenesis seen under simulated microgravity conditions, with changes in cytokine expression further modulating this effect.  相似文献   

8.
9.
10.
We examined expression of genes associated with cytokine production, and genes implicated in regulating bone metabolism, in bone stromal and osteoblast cells incubated under standard ground conditions and under conditions of neutral buoyancy, and in the presence/absence of serum from normal or sleep-deprived mice. We observed a clear interaction between these two conditions (exposure to neutral buoyancy and serum stimulation) in promoting enhanced osteoclastogenesis. Both conditions independently altered expression of a number of cytokines implicated in the regulation of bone metabolism. However, using stromal cells from IL-1 and TNFx cytokine(r) KO mice, we concluded that the increased bone loss under microgravity conditions was not primarily cytokine mediated.  相似文献   

11.
In order to fulfil the microgravity requirements for space experiments,improved technology for the microgravity environment is proposed,including that for raising the orbital altitude,optimizing the layout of the disturbance source,using 1 N-thrusters instead of 5 N-thrusters,etc.In addition,evaluation of the microgravity environment of the recoverable satellite was also conducted using on-orbit micro-vibration measurement,on-orbit experiment and data analysis technologies.The microgravity level of the SJ-10 recoverable satellite in China is compared with the spacecraft used for carrying out space science experiments internationally.This paper describes the microgravity environment of the SJ-10 recoverable satellite,and its importance for analysing space experimental results.  相似文献   

12.
Humans have mental representation of their environment based on sensory information and experience. A series of experiments has been designed to allow the identification of disturbances in the mental representation of three-dimensional space during space flight as a consequence of the absence of the gravitational frame of reference. This NASA/ESA-funded research effort includes motor tests complemented by psychophysics measurements, designed to distinguish the effects of cognitive versus perceptual-motor changes due to microgravity exposure. Preliminary results have been obtained during the microgravity phase of parabolic flight. These results indicate that the vertical height of handwritten characters and drawn objects is reduced in microgravity compared to normal gravity, suggesting that the mental representation of the height of objects and the environment change during short-term microgravity. Identifying lasting abnormalities in the mental representation of spatial cues will establish the scientific and technical foundation for development of preflight and in-flight training and rehabilitative schemes, enhancing astronaut performance of perceptual-motor tasks, for example, interaction with robotic systems during exploration-class missions.  相似文献   

13.
Microgravity due to prolonged bed rest may cause changes in cerebral circulation, which is related to brain function. We evaluate the effect of simulated microgravity due to a 6° head-down tilt bed rest experiment on executive function among 12 healthy young men. Four kinds of psychoneurological tests—the table tapping test, the trail making test, the pointing test and losing at rock–paper–scissors—were performed on the baseline and on day 16 of the experiment. There was no significant difference in the results between the baseline and day 16 on all tests, which indicated that executive function was not impaired by the 16-day 6° head-down tilting bed rest. However, we cannot conclude that microgravity did not affect executive function because of the possible contribution of the following factors: (1) the timing of tests, (2) the learning effect, or (3) changes in psychophysiology that were too small to affect higher brain function.  相似文献   

14.
Candida albicans is an opportunistic fungal pathogen responsible for a variety of cutaneous and systemic human infections. Virulence of C. albicans increases upon exposure to some environmental stresses; therefore, we explored phenotypic responses of C. albicans following exposure to the environmental stress of low-shear modeled microgravity. Upon long-term (12-day) exposure to low-shear modeled microgravity, C. albicans transitioned from yeast to filamentous forms at a higher rate than observed under control conditions. Consistently, genes associated with cellular morphology were differentially expressed in a time-dependent manner. Biofilm communities, credited with enhanced resistance to environmental stress, formed in the modeled microgravity bioreactor and had a more complex structure than those formed in control conditions. In addition, cells exposed to low-shear modeled microgravity displayed phenotypic switching, observed as a near complete transition from smooth to "hyper" irregular wrinkle colony morphology. Consistent with the presence of biofilm communities and increased rates of phenotypic switching, cells exposed to modeled microgravity were significantly more resistant to the antifungal agent Amphotericin B. Together, these data indicate that C. albicans adapts to the environmental stress of low-shear modeled microgravity by demonstrating virulence-associated phenotypes.  相似文献   

15.
During spaceflight the immune system is one of the most affected systems of the human body. During the SIMBOX (Science in Microgravity Box) mission on Shenzhou-8, we investigated microgravity-associated long-term alterations in macrophageal cells, the most important effector cells of the immune system. We analyzed the effect of long-term microgravity on the cytoskeleton and immunologically relevant surface molecules. Human U937 cells were differentiated into a macrophageal phenotype and exposed to microgravity or 1g on a reference centrifuge on-orbit for 5 days. After on-orbit fixation, the samples were analyzed with immunocytochemical staining and confocal microscopy after landing. The unmanned Shenzhou-8 spacecraft was launched on board a Long March 2F (CZ-2F) rocket from the Jiuquan Satellite Launch Center (JSLC) and landed after a 17-day-mission. We found a severely disturbed actin cytoskeleton, disorganized tubulin and distinctly reduced expression of CD18, CD36 and MHC-II after the 5 days in microgravity. The disturbed cytoskeleton, the loss of surface receptors for bacteria recognition, the activation of T lymphocytes, the loss of an important scavenger receptor and of antigen-presenting molecules could represent a dysfunctional macrophage phenotype. This phenotype in microgravity would be not capable of migrating or recognizing and attacking pathogens, and it would no longer activate the specific immune system, which could be investigated in functional assays. Obviously, the results have to be interpreted with caution as the model system has some limitations and due to numerous technical and biological restrictions (e.g. 23 °C and no CO2 supply during in-flight incubation). All parameter were carefully pre-tested on ground. Therefore, the experiment could be adapted to the experimental conditions available on Shenzhou-8.  相似文献   

16.
We measured the amount of visual movement judged consistent with translational head movement under normal and microgravity conditions. Subjects wore a virtual reality helmet in which the ratio of the movement of the world to the movement of the head (visual gain) was variable. Using the method of adjustment under normal gravity 10 subjects adjusted the visual gain until the visual world appeared stable during head movements that were either parallel or orthogonal to gravity. Using the method of constant stimuli under normal gravity, seven subjects moved their heads and judged whether the virtual world appeared to move “with” or “against” their movement for several visual gains. One subject repeated the constant stimuli judgements in microgravity during parabolic flight. The accuracy of judgements appeared unaffected by the direction or absence of gravity. Only the variability appeared affected by the absence of gravity. These results are discussed in relation to discomfort during head movements in microgravity.  相似文献   

17.
《Acta Astronautica》2007,60(4-7):460-471
This study identifies genes that determine survival during a space flight, using the model eukaryotic organism, Saccharomyces cerevisiae. Select strains of a haploid yeast deletion series grew during storage in distilled water in space, but not in ground based static or clinorotation controls. The survival advantages in space in distilled water include a 133-fold advantage for the deletion of PEX19, a chaperone and import receptor for newly- synthesized class I peroxisomal membrane proteins, to 77–40 fold for deletion strains lacking elements of aerobic respiration, isocitrate metabolism, and mitochondrial electron transport. Following automated addition of rich growth media, the space flight was associated with a marked survival advantage of strains with deletions in catalytically active genes including hydrolases, oxidoreductases and transferases. When compared to static controls, space flight was associated with a marked survival disadvantage of deletion strains lacking transporter, antioxidant and catalytic activity. This study identifies yeast deletion strains with a survival advantage during storage in distilled water and space flight, and amplifies our understanding of the genes critical for survival in space.  相似文献   

18.
"Crickets in Space" (CRISP) was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal activation systems. These advantages allowed us to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to microgravity and hypergravity (hg) while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3g-conditions concerning their soma sizes but not their topographical arrangement. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity. The contrary physiological and behavioral results indicate a facilitation of 1g-readaptation by accessory gravity. proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of microgravity or hg-exposure related to the period of neuronal proliferation. Grant numbers: 50WB9553-7.  相似文献   

19.
Research investigating the physiological effects of microgravity on the human body has demonstrated a shift of body fluids in actual spaceflight and in simulated Earth-based microgravity models in both males and females, possibly causing many deleterious physiological effects. Twenty-five anatomically normal female (NF) and 20 ovariectomized (OE) Fischer 344 rats were randomly selected to be in an experimental (1 h of 45 degrees head-down tilt, 45HDT) or control (1 h of prone position) group. At the end of the hour experimental period, the density of the brain, lungs, heart, liver, and left and right kidneys were measured using spiral computed tomography (SCT) while the rats remained in their experimental positions. A sub-group of OE rats (N=6) was administered estrogen replacement therapy on a daily basis (5 micrograms/kg body weight, s.c.) for 4 days and then underwent 1 h of 45HDT and SCT analysis at one day, 2 days, and 5 days to determine if estrogen replacement therapy would alter organ densities. Our data demonstrate that 1 h of 45HDT produced significant increases (p<0.05) in the organ densities of the brain, liver, left kidney, and lung of the OE female group compared to their prone controls. However, only the brain density was significantly increased in the NF group. Estrogen replacement therapy caused a significant decrease in brain organ density at the 5 day time point compared to the 24 h time point. We conclude that estrogen plays a role in fluid distribution in a rat 45HDT model.  相似文献   

20.
The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264?km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号