首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior research has shown that gravistimulation induces preferential movement of calcium toward the lower side of the tips of maize roots and that roots depleted of calcium show impaired gravitropism. To further investigate the role of calcium in root gravitropism, we examined the effects of calcium on auxin movement in both vertical and gravistimulated roots of maize. Longitudinal movement of auxin was basipetally polar in intact roots but acropetally polar in decapped roots. Treatment of the root tip with calcium increased basipetal auxin movement in both intact and decapped roots. Gravistimulation induced asymmetric auxin movement toward the lower side of the root tip. Both asymmetric auxin movement and gravicurvature were inhibited by treatment of the root tip with auxin transport inhibitors or with EGTA. The results indicate that there is a close correlation between curvature and gravity-induced asymmetric auxin movement across the root cap. Since gravistimulation causes calcium movement toward the lower side of the root tip, our observation that calcium promotes basipetal auxin movement supports the idea that gravity-induced calcium asymmetry is a key step linking gravistimulation to the establishment of auxin asymmetry during root gravitropism.  相似文献   

2.
The effects on 17 different structural parameters of mouse small intestine three days after treatment with three types of heavy ion (neon, iron and niobium) are compared, the first two being of particular relevance to space flight. The data for niobium are given in full, showing that changes after niobium ion treatment are not standard and are concentrated in the epithelial compartment, with few of the parameters having a response which is dose dependent. When comparisons are made for the three types of heavy ion, the damage is greatest after neon ion irradiation, implying that the additional non-epithelial damage produced as LET rises from X rays through neutrons to neon ions is not necessarily maintained as LET continues to rise. Further understanding is therefore needed of the balance between changes affecting the vascular and absorptive components of the organ. Variation from group to group is also important, as is variation of strain or gastrointestinal status. All such factors are important in the understanding of changes in multicellular organs after exposure to heavy ion radiation.  相似文献   

3.
Calcium signaling has been implicated in plant graviperception. In order to investigate the role of intracellular calcium in the process, I used lithium ions (LiCl), which suppress inositol 1,4,5-trisphosphate (IP3) cycling and signaling by inhibiting inositol-1-phosphatase. After 4 h of gravistimulation, no curvature was observed in 81% of the roots of 5-day Pisum sativum seedlings pretreated with 5 mM LiCl. Structural features of statocyte ultrastructure in these roots were the following: loss of a cellular polarity, appearance of amyloplast clusters, condensed mitochondria, local dilations in a perinuclear space, increases in a relative volume of vacuoles. The intensity of a cytochemical reaction (pyroantimonate staining which detected Ca2+ ions) was moderate: the Ca2+ pyroantimonate deposits were observed in all organelles. There were few granules of this precipitate in a hyaloplasm of the statocytes. Mitochondria and vacuoles were found to contain more granules of the precipitate compared with the controls. Additionally, Ca(2+)-ATPase activity in the statocytes of pea roots pretreated with LiCl was approximately the same as in control roots. Data obtained by using inhibitor of inositol signaling suggest that the observed effects of LiCl on root gravicurvature and ultrastructure of root statocytes were due to effects on Ca2+ homeostasis, particularly on IP3-mediated release of intracellular Ca2+ which can be inhibited by inositol depletion. The work demonstrates the key role played by second messengers (Ca2+ and IP3) in a gravity perception and response.  相似文献   

4.
太阳活动与热层大气密度的相关性研究   总被引:1,自引:2,他引:1       下载免费PDF全文
为分析太阳活动对热层大气的影响,使用250km,400km,550km高度处热层大气密度与太阳F10.7指数数据,研究了二者的周期变化及相关关系. 结果表明,热层大气密度的变化与太阳活动呈现相似的变化趋势;两者均具有显著的27天及11年周期变化特征,热层大气密度还存在7~11天及0.5年和1年的变化特征,且高度越高越明显;热层大气密度对太阳活动的最佳响应滞后为3天,无论何种地磁活动水平下,400km高度处相关性高于250km,550km处相关性最小,且太阳活动下降相期间高于上升相;250km,400km和550km高度处热层大气密度和太阳活动的统计结果分别为饱和、线性和放大关系;高度越高的热层大气密度对太阳活动响应越敏感.  相似文献   

5.
We report results of a statistical study correlating ionized solar wind (ISW) fluxes observed by ACE during late 2000 and throughout 2001 with neutral solar wind (NSW) fluxes observed by IMAGE/LENA over the same period. The average correlation coefficient between the neutral and ionized solar wind is 0.66 with correlations greater than 0.80 occurring about 29% of the time. Correlations appear to be driven by high solar wind flux variability, similar to results obtained by in situ multi-spacecraft correlation studies. In this study, however, IMAGE remains inside the magnetosphere on over 95% of its orbits. As a function of day of year, or equivalently ecliptic longitude, the slope of the relationship between the neutral solar wind flux and the ionized solar wind flux shows an enhancement near the upstream direction, but the symmetry point appears shifted toward higher ecliptic longitudes than the interstellar neutral (ISN) flow direction by about 20°. The estimated peak interstellar neutral upstream density inside of 1 AU is about 7 × 10−3 cm−3.  相似文献   

6.
The mode of gravisensing in higher plants is not yet elucidated. Although, it is generally accepted that the amyloplasts (statoliths) in the root cap cells (statocytes) are responsible for susception of gravity. However, the hypothesis that the whole protoplast acts as gravisusceptor cannot be dismissed. The nature of the sensor that is able to transduce and amplify the mechanical energy into a biochemical factor is even more controversial. Several cell structures could potentially serve as gravireceptors: the endoplasmic reticulum, the actin network, the plasma membrane, or the cytoskeleton associated with this membrane. The nature of the gravisusceptors and gravisensors is discussed by taking into account the characteristics of the gravitropic reaction with respect to the presentation time, the threshold acceleration, the reciprocity rule, the deviation from the sine rule, the movement of the amyloplasts, the pre-inversion effect, the response of starch free and intermediate mutants and the effects of cytochalasin treatment. From this analysis, it can be concluded that both the amyloplasts and the protoplast could be the gravisusceptors, the former being more efficient than the latter since they can focus pressure on limited areas. The receptor should be located in the plasma membrane and could be a stretch-activated ion channel.  相似文献   

7.
This experiment was conducted as part of a risk mitigation payload aboard the Space Shuttle Atlantis on STS-101. The objectives were to test a newly developed water delivery system, and to determine the optimal combination of water volume and substrate for the imbibition and germination of flax (Linum usitatissimum) seeds in space. Two different combinations of germination paper were tested for their ability to absorb, distribute, and retain water in microgravity. A single layer of thick germination paper was compared with one layer of thin germination paper under a layer of thick paper. Paper strips were cut to fit snugly into seed cassettes, and seeds were glued to them with the micropyle ends pointing outward. Water was delivered in small increments that traveled through the paper via capillary action. Three water delivery volumes were tested, with the largest (480 microliters) outperforming the 400 microliters and 320 microliters volumes for percent germination (90.6%) and root growth (mean=4.1 mm) during the 34-hour spaceflight experiment. The ground control experiment yielded similar results, but with lower rates of germination (84.4%) and shorter root lengths (mean=2.8 mm). It is not clear if the roots emerged more quickly in microgravity and/or grew faster than the ground controls. The single layer of thick germination paper generally exhibited better overall growth than the two layered option. Significant seed position effects were observed in both the flight and ground control experiments. Overall, the design of the water delivery system, seed cassettes and the germination paper strip concept was validated as an effective method for promoting seed germination and root growth under microgravity conditions.  相似文献   

8.
利用1966—1975年间行星际参量的时均值,以及由它们组合而成的函数与地磁指数作一元和多元逐步回归分析.由这些参量求得日均值和日变幅以后,再做日均值和日变幅与上述地磁指数的一元和多元逐步回归分析.  相似文献   

9.
Data are presented of a comparative analysis on rhizogenesis in the Arabidopsis thaliana tissue culture growing in a solid nutrient medium under stationary conditions, clinostatic conditions and microgravity. Tissue samples weighing 100 mg. were set in the Petri dishes and placed in a horizontal slow clinostat /2 revs/min/. After 14 days of growth they were analyzed. On clinostating the number of roots formed from the callus cells was approximately one half the control. The formed root cap manifested no essential differences, in comparison with the stationary control, in the number of layers and cell sizes in its layers. In callusogenic roots, formed from clinostated cells, differentiation including root cap cells, proceeds without noticeable deviations from the norm. At the same time, gravireceptor cells do not function under these conditions. This is clearly displayed at a structural level in the location of amyloplasts-statoliths throughout the cytoplasm. The callus cell cultures experienced microgravity for 8 days. The number of formed roots under the influence of this factor was 36% relative to the stationary control. Root cap formation was abnormal. Gravireceptor cells did not formed under microgravity.  相似文献   

10.
Space and clinostatic experiments revealed that changes of plant cell wall structure and its function depend on type of tissue and duration of influence. It was shown that clinostat conditions reproduce the part of weightlessness biological effects. It is established that various responses of wall structural-metabolic organization occur at microgravity: changes of cell walls ultrastructure and organelles structure; decrease of synthesis of primary plant cell wall; rearrangements of polysaccharides content. It is shown that mechanisms of plant cell wall changes at microgravity are connected with decrease of cellulose crystallization, activation of pectolytic enzymes and rearrangement of calcium balance of apoplast and cytoplasm.  相似文献   

11.
Published observations on the response times following gravistimulation (horizontal positioning) of Chara rhizoids and developing roots of vascular plants with normal and "starchless" amyloplasts were reviewed and compared. Statolith motion was found to be consistent with gravitational sedimentation opposed by elastic deformation of an intracellular material. The time required for a statolith to sediment to equilibrium was calculated on the basis of its buoyant density and compared with observed sedimentation times. In the examples chosen, the response time following gravistimulation (from horizontal positioning to the return of downward growth) could be related to the statolith sedimentation time. Such a relationship implies that the transduction step is rapid in comparison with the perception step following gravistimulation of rhizoids and developing roots.  相似文献   

12.
The effect of hypergravity on the white blood cell (WBC) line of mice was investigated by use of horizontal centrifuge. Several sets of experiments were performed, in which the parameters measured were the WBC and differential cell count in the peripheral blood. In another experiment, lymphocyte counts from the spleen, lymph nodes, and the thymus were measured. The needed samples were taken from the mice during a stay of 7-40 days under a hypergravity of 1.6G. The test groups that were placed on the arms of the centrifuge (1.6G) were compared with stationary control groups (1G) and a rotating control group located at the center of the centrifuge (1G). Such a comparison revealed the test animals to be deficient on all counts, to wit, showing a decrease in total number of WBC's, a decrease in lymphocyte number in the peripheral blood and a decrease in the number of lymphocyte in the spleen and thymus. The decrease of lymphocytes in peripheral blood was characterized by two different slopes--an early and temporary decrease at the first days of the experiment evident in both test and rotating control groups followed by a temporary increase, and a later persistent decrease, evident only in the test group, while in the rotating control lymphocyte counts reverted to normal. There were no significant differences in monocyte or neutrophil counts, except for a temporary increase in the number of neutrophils which peaked on the seventh day. In order to evaluate the effect of hypergravity on restoration of hematopoiesis following hematopoietic suppression, 5-fluoro-uracil (5-FU) was administered i.v. to both the experimental and control mice. Suppression of bone marrow was observed in all groups injected with 5-FU, but while there was later an increase in cell counts in the control groups, there was no such increase in the test group subjected to hypergravity.  相似文献   

13.
Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.  相似文献   

14.
The typical response of plant organs to gravistimulation is differential growth that leads to organ bending. If the gravitropic stimulus is withdrawn, endogenous compensation of the graviresponse and subsequent straightening occur in some plants. For instance, autonomic straightening of Lepidium roots occurs when gravitropically-curved rootsare rotated on a clinostat (Stankovi et al., 1998a). To determine whether endogenous compensation of the graviresponse also occurs in space, microgravity-grown cress roots were laterally centrifuged in-flight and then returned to microgravity using Biorack hardware on a shuttle mission (STS-81). The cress roots were centrifuged at 4 different g-doses (0.1 x g and 1 x g for 15 or 75 min). All four treatments yielded varying degrees of root curvature. Upon removal from the centrifuge, roots in all four treatments underwent subsequent straightening in microgravity. This straightening resulted from a loss of gravitropic curvature in older regions of the root and the coordinated alignment of new growth. These results show that both microgravity and clinostat rotation on Earth are equivalent in stimulus withdrawal with respect to the induction of endogenous compensation of the curvature. Cress roots are the only plant organ shown to undergo compensation of the curvature in both microgravity and on a clinostat. The compensation of graviresponse in space rules out the hypothesis that the endogenous root straightening ("autotropism") represents a commitment to a pre-stimulus orientation with respect to gravity and instead suggests that there is a default tendency towards axiality following a withdrawal of a g-stimulus.  相似文献   

15.
Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was maintained until the obstacle was circumvented, at which point normal gravitropic growth was resumed. Thus, the gravitational set-point angle of the primary and lateral roots prior to encountering the barrier were 95 degrees and 136 degrees respectively and after growing off the end of the obstacle identical set-point angles were reinstated. However, whilst tracking across the barrier, quantitative differences in response were observed between these two classes of roots. The root tip of the primary root maintained an angle of 136 degrees to the horizontal as it traversed the barrier whereas the lateral roots adopted an angle of 154 degrees. Thus, this root tip angle appeared dependent on the gravitropic set-point angle of the root type with the difference in tracking angle quantitatively reflecting differences in initial set-point angle. Concave and convex barriers were also used to analyze the response of the root to tracking along a continuously varying surface. The roots maintained the a fairly fixed angle to gravity on the curved surface implying a constant resetting of this tip angle/tracking response as the curve of the surface changed. We propose that the interaction of touch and gravity sensing/response systems combine to strictly control the tropic growth of the root. Such signal integration is likely a critical part of growth control in the stimulus-rich environment of the soil.  相似文献   

16.
Phototropism in Arabidopsis roots is mediated by two sensory systems.   总被引:2,自引:0,他引:2  
Phototropism has been well-characterized in stems and stem-like organs, but there have been relatively few studies of root phototropism. Our experiments suggest that there are two photosensory systems that elicit phototropic responses in roots of Arabidopsis thaliana: a previously identified blue-light photoreceptor system mediated by phototropin (=NPH1 protein) and a novel red-light-based mechanism. The phototropic responses in roots are much weaker than the graviresponse, which competes with and often masks the phototropic response. It was through the use of mutant plants with a weakened graviresponse that we were able to identify the activity of the red-light-dependent phototropic system. In addition, the red-light-based photoresponse in roots is even weaker compared to the blue-light response. Our results also suggest that phytochrome may be involved in mediating positive phototropism in roots.  相似文献   

17.
This research aims to characterize regulation of the principal cytosolic protein kinases in maize, cultivar 'Merit' root tips, since much evidence indicates that stimuli which modulate the gravitropic response in this system act through regulation of activity of these enzymes. To this end, we have cloned a maize protein kinase belonging to a group of plant protein kinases with a catalytic domain similar in primary structure to the second messenger-regulated protein kinases known in animal and fungal systems. However, both the unique structural features conserved among plant protein kinases in this group, and lack of evidence for cyclic nucleotide signalling in plants point to operation of a novel protein kinase regulatory mechanism in plants. In order to test effects of possible regulators on protein kinase activity, we developed a sensitive method for detecting regulation of autophosphoryl labelling of protein kinases in unfractionated maize protein extracts. Regulation of protein kinase autophosphorylation in these extracts was different from that known in animals and fungi, further suggesting operation of unique protein kinase regulatory mechanisms in plants. Previous research has shown that light, or factors modulated by light, regulate plant protein kinase activity. We found that protein kinase activity was co-immunoprecipitated with the plant photoreceptor phytochrome, and was associated with phytochrome by high-affinity chemical interactions. Far-red reversibility of red-light regulation of phytochrome phosphorylation by the associated protein kinase indicates that it may modulate or transduce the light signals which lead to gravitropic sensitivity in 'Merit' maize.  相似文献   

18.
Short-period pulsations recorded at five stations in Finland during the IMS have been compared. The morning occurrences accepted as Pc 1's showed certain peculiarities in their dependence on latitude. A connection was found between the averaged daily duration of Pc 1's and the foF2 parameter. This hints at the influence of propagation conditions. It was found that, after certain geomagnetic storms, the mid-latitude ionospheric absorption of LF radio waves can significantly increase when the Pc 1 activity is also enhanced at each high-latitude station.  相似文献   

19.
偏置弹簧参数对形状记忆合金(SMA,Shape Memory Alloy)驱动器的输出性能有着非常大的影响.为获得其影响规律,通过试验研究了不同偏置弹簧刚度以及不同弹簧预压缩载荷下,SMA驱动器的作动位移、响应速度的变化规律以及循环次数对驱动器性能的影响规律.试验结果表明,驱动器最大作动位移及响应速度随弹簧刚度或预载的增大而降低;驱动器性能在前几次循环中衰减较大,随着循环进行性能逐渐趋于稳定;弹簧预载的增大使驱动器性能稳定所需的循环次数减少,而弹簧刚度对驱动器输出性能的循环变化规律影响不大.   相似文献   

20.
Although lightning has not been observed in Titan's atmosphere, the presence of methane rain in the troposphere suggests the possibility of electrical activity in the form of corona and/or lightning discharges. Here we examine the chemical effects of these electrical processes on a Titan simulated atmosphere composed of CH4 in N2 at various mixing ratios. Corona discharges were simulated in two different experimental arrays. For the detection of reactive intermediates we used a mass spectrometer to study the main positive ions arising by bombarding low-energy electrons from a hot filament into low-pressure methane. The final stable products, generated by applying a high voltage in a coaxial reactor with either positive or negative polarity, were separated and detected by gas chromatography-Fourier transform infrared spectroscopy and electron impact mass spectrometry (GC-FTIR-MS). Lightning discharges were simulated by a hot and dense plasma generated by a Nd-YAG laser and the final products were separated and detected by GC-FTIR-MS. Corona discharges produce linear and branched hydrocarbons as well as nitriles whereas lightning discharges generate mainly unsaturated hydrocarbons and nitriles. Lightning discharges are about 2 orders of magnitude more efficient in product formation than corona discharges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号