首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
  总被引:2,自引:2,他引:2  
电磁航天器编队飞行是指利用若干个航天器之间的电磁力进行相对运动控制的新型编队飞行.分析了两颗电磁航天器编队飞行的相对运动的基本原理,基于能量消耗均衡性的考虑,给出了根据控制力求解其控制磁矩的解析解.基于极坐标建立了电磁航天器非线性相对运动动力学模型,从外界不确定干扰力和电磁计算模型的远场近似两个角度,分析了该动力学模型的参数不确定性.针对编队构型保持问题以及参数不确定性,设计了近地圆轨道上两颗电磁航天器编队构型保持的自适应控制律并进行了数值仿真分析.仿真结果表明:相对运动模型和自适应控制律是有效的,编队构型能够收敛到期望值,同时对不确定参数进行了准确的估计,说明利用星间电磁作用进行航天器编队构型保持是可行的.  相似文献   

2.
This paper addresses connectivity preservation and collision avoidance problem of spacecraft formation flying with multiple obstacles and parametric uncertainties under a proximity graph. In the proximity graph, each spacecraft can only get the states of the neighbor spacecraft within its sensing region. Connectivity preservation of a graph means that the connectivity of the graph should be preserved at all times during spacecraft formation flying. We consider two cases: (i) the obstacles are static, and (ii) the obstacles are dynamic. In the first case, a distributed continuous control algorithm based on artificial potential function and equivalent certainty principle is proposed to account for the unknown parameters and the static obstacles. In the second case, a sliding surface combined with a distributed adaptive control algorithm is proposed to tackle the influence of the dynamic obstacles and the unknown parameters at the same time. With the distributed control algorithms, the desired formation configuration can be achieved while the connectivity of the graph is preserved and the collisions between the spacecraft and the obstacles are avoided. Numerical simulations are presented to illustrate the theoretical results.  相似文献   

3.
This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector’s desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance strategy and MIPC control method of space robots.  相似文献   

4.
Inter-spacecraft electrostatic force (Coulomb force) is desirable for close formation flying control because of its propellant-less and free contaminate characteristics attributed to the propellant exhaust emission. This paper presents robust optimal sliding mode control to deal with the problem of thruster saturation in tracking the formation trajectory for Coulomb spacecraft formation flying. The robust controller design is based on optimal control theory as a linear quadratic system, and it is augmented with an integral sliding mode control technique. The stability of the closed-loop system is guaranteed using the second Lyapunov method. The developed controller outperforms the existing ones, because it has a higher degree of fine-tuning to cope with the uncertainty. Numerical simulations are employed to confirm the efficiency of the developed controller.  相似文献   

5.
A relative navigation and formation control algorithm for satellite formation flying was developed, and a hardware-in-the-loop (HIL) simulation testbed was established and configured to evaluate this algorithm. The algorithm presented is a relative navigation estimation algorithm using double-difference carrier-phase and single-difference code measurements based on the extended Kalman filter (EKF). In addition, a state-dependent Riccati equation (SDRE) technique is utilized as a nonlinear controller for the formation control problem. The state-dependent coefficient (SDC) form is formulated to include nonlinearities in the relative dynamics. To evaluate the relative navigation and control algorithms developed, a closed-loop HIL testbed is configured. To demonstrate the performance of the testbed, a test formation flying scenario comprising formation acquisition and keeping in a low earth orbit (LEO) has been established. The relative navigation results from the closed-loop simulations show that a 3D RMS of 0.07 m can be achieved for position accuracy. The targeted leader–follower formation flying in the along-track separation of 100 m was maintained with a mean position error of approximately 0.2 m and a standard deviation of 0.9 m. The simulation results show that the HIL testbed is capable of successful demonstration of the GPS-based satellite autonomous formation flying mission.  相似文献   

6.
A two degree-of-freedom signal-based optimal H robust output feedback controller is designed for satellite formation in an arbitrary elliptical reference orbit. Based on high-fidelity linearized dynamics of relative motion, uncertainties introduced by non-zero eccentricity and gravitational J2 perturbation are separated to construct a robust control model. Furthermore, a distributed robust control model is derived by modifying the perturbed robust control model of each satellite with the eigenvalues of the Laplacian matrix of the communication graph, which represent uncertainty in the communication topology. A signal-based optimal H robust controller is then designed primarily. Considering that the uncertainties involved in the distributed robust control model have a completely diagonal structure, the corresponding analyses are made through structured singular value theory to reduce the conservativeness. Based on simulation results, further designs including increasing the degrees of freedom of the controller, modifying the performance and control weighted functions, adding a post high-pass filter according to the dynamic characteristics, and reducing the control model are made to improve the control performance. Nonlinear simulations demonstrate that the resultant optimal H robust output feedback controller satisfies the robust performance requirements under uncertainties caused by non-zero eccentricity, J2 perturbation, and varying communication topology, and that 5 m accuracy in terms of stable desired formation configuration can be achieved by the presented optimal H robust controller. In addition to considering the widely discussed uncertainties caused by the orbit of each satellite in a formation, the optimal H robust output feedback control model presented in the current work considers the uncertainties caused by varying communication topology in the satellite formation that works in a cooperative way. Other new improvements include adopting a new method to more accurately describe and analyze the effects of the higher-order J2 perturbation, combining all the uncertainties into a diagonal structure, and utilizing a structured singular value to synthesize and analyze the controller.  相似文献   

7.
Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8?km parachute deployment point distribution error) than the baseline control scheme (8.4?km) and integral control scheme (5.8?km).  相似文献   

8.
Spacecraft relative motion with inter-craft electromagnetic force has distinct advantages, and its invariant shapes that are convenient for formation keeping ensure some potential significant applications. However, the electromagnetic actuators affect both the relative trajectory and attitude motion, complicating related researches on issues of invariant shape design and formation control. In this paper, the formation keeping problem for an invariant three-craft triangular electromagnetic formation is investigated on the basis of a 6-DOF full nonlinear dynamic model. Moreover, a combined control scheme consisting of feed-forward and feed-back control components is proposed to handle the high nonlinearity, strong coupling, model uncertainties and external disturbances. The feed-forward component is obtained through desired invariant shape design which is complicated by the coupling and superposition effects of any two distinct magnetic dipoles, and the feed-back component is developed with a combination of linear feed-back controller by the LQR method and active disturbance rejection by the extended state observer. Finally, the numerical simulation is presented to verify the feasibility and validity of the proposed 6-DOF combined control scheme.  相似文献   

9.
卫星姿态大角度机动的轨迹规划和模型预测与反演控制   总被引:2,自引:0,他引:2  
空间科学观测、态势感知、对地遥感、操控服务等应用对卫星提出了高精度、高稳定度、平稳柔顺大角度姿态机动的需求。采用欧拉角形式,对时变、非线性卫星姿态动力学系统进行了分析与建模,将每一个测控周期视为一个姿态机动过程。基于动力学系统受控运动的规律,在每一个姿态跟踪机动过程中,预测姿态偏差,通过卫星姿态演化的反演得到控制指令。以三角函数为基础,设计了一种卫星姿态大角度机动的运动轨迹规划方法。本文所述的轨迹规划及控制方法具有轨迹跟踪精度高、稳定性好,跟踪和机动过程平稳柔顺的特点。数学仿真验证了该方法的可行性和有效性。 关键词:轨迹规划; 模型预测与反演控制; 卫星姿态; 大角度机动  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号