首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To understand global variability and triggering mechanisms of ionospheric nighttime equatorial spread F (ESF), we analyzed measurements from satellite and a ground-based GPS station for the years between 2010 and 2017. In this study we present seasonal-longitudinal as well as monthly variability of ESF occurrence for solar minimum and yearly variations of ESF occurrence for solar maximum and minimum periods. One of the long standing open questions in the study of ESF is what exactly initiates the Rayleigh-Taylor (RT) plasma instability growth. This question is the focus of the present work. Zonal background eastward electric field and E × B upward plasma drift speed patterns are found to be critically important in understanding plasma irregularity formation. In addition to particular patterns observed on these parameters, the background plasma density in the local evening hours just before the onset of ESF occurrence is very important. Stronger plasma densities just before the onset of irregularities resulted in stronger plasma irregularities, while relatively less dense plasma just before the onset of irregularities resulted in relatively lower plasma irregularities. Seasonal variations in ESF activity between March and September equinox seasons with comparable plasma densities can be defined in terms of the rate of change of solar flux F10.7 (dF10.7/day) index. Strongest ESF occurrence and strongest dF10.7/day are measured in the same month out of all other months in 2016 and 2017. Longitudinal variations of ESF activity in our measurements are related to longitudinal variations of plasma densities. We also found that ESF occurrence is better correlated with rate of change of F10.7 index for months in equinox seasons than for months in solstice seasons for the years between 2013 and 2016.  相似文献   

2.
3.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   

4.
This study presents a statistical analysis of GPS L-band scintillation with data observed from July 2008 to March 2012 at the northern crest of equatorial anomaly stations in Guangzhou and Shenzhen of South China. The variations of the scintillation with local time, season, solar activity and duration of scintillation patches were investigated. The relationship between the scintillation and TEC depletion was also reported. Our results revealed that GPS scintillation occurred from 19:30 LT (pre-midnight) to 03:00 LT (post-midnight). During quiet solar activity years, the scintillation was only observed in pre-midnight hours of equinox months and patches durations were mostly less than 60 min. During high solar activity years, more scintillation occurred in the pre-midnight hours of equinox and winter months; and GPS scintillation started to occur in the post-midnight hours of summer and winter. The duration of scintillation patches extended to 180 min in high solar activity years. Solar activity had a larger effect to strong scintillations (S4 > 0.6) than to weak scintillations (0.6 ? S4 > 0.2). Strong scintillations were accompanied by TEC depletion especially in equinox months. We also discussed the relationship between TEC depletion and plasma bubble.  相似文献   

5.
In this paper, the F2-layer critical frequency (foF2) and peak height (hmF2) measured by the FM/CW ionosonde at Thailand equatorial latitude station, namely Chumphon (10.72°N, 99.37°E, dip 3.22) are presented. The measurement data during low solar activity from January 2004 to December 2006 are analyzed based on the diurnal, seasonal variation. The results are then compared with IRI-2001 model predictions. Our study shows that: (1) In general, both the URSI and CCIR options of the IRI model give foF2 close to the measured ones, but the CCIR option produces a smaller range of deviation than the URSI option. The agreement during daytime is generally better than during nighttime. Overestimation mostly occurs in 2004 and 2006, while underestimation is during pre-sunrise hours in June solstice in 2005. The peak foF2 around sunset is higher during March equinox and September equinox than the other seasons, with longer duration of maximum levels in March equinox than September equinox. Large coefficients of variability foF2 occur during pre-sunrise hours. Meanwhile, the best agreement between the observed foF2 and the IRI model is obtained in June solstice. (2) In general, The IRI (CCIR) model predicts the observed hmF2 well during daytime in June solstice from 2004–2006, but it overestimates during March equinox, September equinox and December solstice. For nighttime, the model overestimates hmF2 values for all seasons especially during March equinox and September equinox. However, the model underestimates hmF2 values during September equinox and for some cases during June solstice and December solstice at pre-sunrise. The agreement between the IRI model and the hmF2(M3000OBS) is worst around noontime, post-sunset and pre-sunrise hours. All comparative studies give feedback for new improvements of CCIR and URSI IRI models.  相似文献   

6.
F-region vertical plasma drift velocities were deduced from the hourly hmF2 values acquired from ionogram data over a near dip equatorial station Ouagadougou (12.4°N, 358.5°E, dip angle 5.9°N) in Africa. Our results are compared against the global empirical model of Scherliess and Fejer (1999) incorporated in the IRI model (IRI-2007) for 1600 to 0800 LT from 1 year of data during sunspot maximum year of 1989 (yearly average solar flux intensity, F10.7 = 192) corresponding to the peak phase of solar cycle 22, under magnetically quiet conditions. The drifts are entirely downward between 2000 and 0500 LT bin for both techniques and the root mean square error (RMSE) between the modeled and the ionosonde vertical plasma drifts during these periods is 3.80, 4.37, and 4.74 m/s for June solstice, December solstice and equinox, respectively. Ouagadougou average vertical drifts show evening prereversal enhancement (PRE) velocity peaks (VZP) of about 16, 14, and 17 m/s in June solstice, December solstice, and equinox, respectively, at 1900–2000 LT; whereas global empirical model average drifts indicate VZP of approximately 33 m/s (June solstice), 29 m/s (December solstice), and 50 m/s (equinox) at 1800 LT. We find very weak and positive correlation (+0.10376) between modeled VZP versus F10.7, while ionosonde VZP against F10.7 gives worst and opposite correlation (−0.05799). The results also show that modeled VZPAp indicates good and positive correlation (+0.64289), but ionosonde VZPAp exhibits poor and negative correlation (−0.22477).  相似文献   

7.
We investigated the diurnal, seasonal and latitudinal variations of ion density Ni over the Indian low and equatorial topside ionosphere within 17.5°S to 17.5°N magnetic latitudes by combining the data from SROSS C2 and ROCSAT 1 for the 9 year period from 1995 to 2003 during solar cycle 23. The diurnal maximum density is found in the local noon or in the afternoon hours and the minimum occurs in the pre sunrise hours. The density is higher during the equinoxes as compared to that in the June and December solstice. The local time spread of the daytime maximum ion density increases with increase in solar activity. A north south asymmetry with higher ion density over northern hemisphere in the June solstice and over southern hemisphere in December solstice has been observed in moderate and high solar activity years. The crest to crest distance increases with increase in solar flux. Ion density bears a nonlinear relationship with F10.7 cm solar flux and EUV flux in general. The density increases linearly with solar flux up to ∼150 sfu (1 sfu = 10−22Wm−2Hz−1) and EUV flux up to ∼50 units (109 photons cm−2 s−1). But beyond this the density saturates. Inverse saturation and linear relationship have been observed in some season or latitude also. Inter-comparison of the three solar activity indices F10.7 cm flux, EUV flux and F10.7P (= (F10.7 + F10.7A)/2, where F10.7A is the 81 day running average value of F10.7) shows that the ion density correlates better with F10.7P and F10.7 cm fluxes. The annual average daytime total ion density from 1995 to 2003 follows a hysteresis loop as the solar cycle reverses. The ion density at 500 km over the Indian longitude sector as obtained by the international reference ionosphere is in general lower than the measured densities during moderate and high solar activity years. In low solar activity years the model densities are equal or higher than measured densities. The IRI EIA peaks are symmetric (±10°) in equinox while densities are higher at 10°N in June solstice and at 10°S in the December solstice. The model density follows F10.7 linearly up to about F10.7 > ∼150 sfu and then saturates.  相似文献   

8.
The ionospheric Total Electron Content (TECs), derived by dual frequency signals from the Global Positioning System (GPS) recorded near the Indian equatorial anomaly region, Bhopal (23.2°N, 77.4°E, Geomagnetic 14.2°N) were analyzed for the period of January, 2005 to February, 2008. The work deals with monthly, diurnal, solar and magnetic activity variations on night-time enhancement in TEC. From a total of 157 night-time enhancements, 75 occur during pre-midnight and 82 post-midnight hours. The occurrence of night-time enhancement in TEC is utmost during summer months, followed by equinox and winter months. The occurrence of night-time enhancement in TEC decreases with increase in solar and magnetic activities. We observed that peak size and half amplitude duration are positively correlated, while time of occurrence of night-time enhancement in TEC and time of peak enhancement are negatively correlated with solar activity. The peak size, half amplitude duration, time of peak enhancement and time of occurrence of night-time enhancement in TEC shows negative correlation with magnetic activity. The results have been compared with the earlier ones and discussed in terms of possible source mechanism responsible for the enhancement at anomaly crest region.  相似文献   

9.
Bottom side electron density profiles for two stations at the southern crest of the Equatorial Ionization Anomaly (EIA), São José dos Campos (23.1°S, 314.5°E, dip latitude 19.8°S; Brazil) and Tucumán (26.9°S, 294.6°E, dip latitude 14.0°S; Argentina), located at similar latitude and separated by only 20° in longitude, have been compared during equinoctial, winter and summer months under low (year 2008, minimum of the solar cycle 23/24) and high solar activity (years 2013–2014, maximum of the solar cycle 24) conditions. An analysis of parameters describing the bottom side part of the electron density profile, namely the peak electron density NmF2, the height hmF2 at which it is reached, the thickness parameter B0 and the shape parameter B1, is carried out. Further, a comparison of bottom side profiles and F-layer parameters with the corresponding outputs of IRI-2012 and NeQuick2 models is also reported. The variations of NmF2 at both stations reveal the absence of semi-annual anomaly for low solar activity (LSA), evidencing the anomalous activity of the last solar minimum, while those related to hmF2 show an uplift of the ionosphere for high solar activity (HSA). As expected, the EIA is particularly visible at both stations during equinox for HSA, when its strength is at maximum in the South American sector. Despite the similar latitude of the two stations upon the southern crest of the EIA, the anomaly effect is more pronounced at Tucumán than at São José dos Campos. The differences encountered between these very close stations suggest that in this sector relevant longitudinal-dependent variations could occur, with the longitudinal gradient of the Equatorial Electrojet that plays a key role to explain such differences together with the 5.8° separation in dip latitude between the two ionosondes. Furthermore at Tucumán, the daily peak value of NmF2 around 21:00 LT during equinox for HSA is in temporal coincidence with an impulsive enhancement of hmF2, showing a kind of “elastic rebound” under the action of the EIA. IRI-2012 and NeQuick2 bottom side profiles show significant deviations from ionosonde observations. In particular, both models provide a clear underestimation of the EIA strength at both stations, with more pronounced differences for Tucumán. Large discrepancies are obtained for the parameter hmF2 for HSA during daytime at São José dos Campos, where clear underestimations made by both models are observed. The shape parameter B0 is quite well described by the IRI-2012 model, with very good agreement in particular during equinox for both stations for both LSA and HSA. On the contrary, the two models show poor agreements with ionosonde data concerning the shape parameter B1.  相似文献   

10.
This study presents unique perspectives of occurrence and strength of low latitude ionospheric scintillations on multiple signals of Global Navigation Satellite System (GNSS) and its frequency dependence using continuous observation records of 780 nights. A robust comparative analysis is performed using scintillation index, S4 and its variation during pre-midnight and post-midnight duration from a GNSS receiver located at Waltair (17.7°N, 83.3°E), India, covering period from July 2014 to August 2016. The results, generally exhibit the impact of declining phase of solar cycle 24 on occurrence and strength of scintillations, which, however, is evidently different over different frequencies transmitted from different GNSS systems. A deeper quantitative analysis uniquely reveals that apart from the solar cycle and seasonal effects, the number of visible satellites of a selected GNSS markedly affect the occurrence and also the strength. Processing scheme of adopting 6 hourly time windows of pre-midnight and post-midnight brought a novel result that the strength and occurrence of strong scintillations decrease with declining solar activity during pre-midnight hours but remarkably increase for moderate and weak scintillations during post-midnight. The physical processes that dominate the post-midnight equatorial ionosphere are invoked to explain such variations that are special during declining solar activity. Finally, inter-GNSS signal analysis in terms of the effect of strong, moderate and weak scintillations is presented with due consideration of number of satellite passes affected and frequency dependence of mean S4. The quantitative results of this study emphasize for the first time effect of low latitude scintillation on GNSS signals in Indian zone under changing background solar and seasonal conditions.  相似文献   

11.
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12.  相似文献   

12.
We have examined the ionospheric plasma irregularities that were recorded by using three ground-based receivers of the global positioning system (GPS) located at Brazilian longitudes during the period of a complete solar cycle, 1995–2005. The statistic results show that ionospheric irregularities are very easy to occur in December solstice months but rare to occur in June solstice months. Besides, the occurrence rates of irregularities in both December and June solstice months are little dependent on solar activity. However, in equinoctial months, the development of irregularities is obviously dependent on solar activity. There is a new finding in this study that if strong irregularities are distinguished from moderate ones, their occurrence rates would increase with solar activity during the December solstice months.  相似文献   

13.
This research examined the variability of foE in the equatorial ionosphere with solar activity within the equatorial ionospheric anomaly region. Ionosonde data recorded at Ouagadougou (lat. 12.4°N, long. 1.5°W and magnetic dip 1.43°N) were engaged to study the transient variations of the critical frequency of the E-layer (foE) and its dependence on solar activity. The study revealed that foE increases with the increase in solar intensity of the sun. The variability of the foE decreases with increases in the solar activity. The maximum value of the foE is at local noon when the ionosphere is stable; the variability at this local time is minimal. The minimum value of the foE is at sunrise and sunset, at this period on local time the equatorial ionosphere recorded its maxima variability. Irrespective of the degree of solar activity, foE is observed to be maximum in June solstice, followed by the equinoxes and minimum in December solstice. Equinoctial asymmetry occurred in the variation of the relative standard deviation of foE with maximum in September/March equinox for low/high solar activity.  相似文献   

14.
The occurrence of an additional F3-layer has been reported at Brazilian, Indian and Asian sectors by several investigators. In this paper, we report for the first time the seasonal variations of F3-layer carried out near the southern crest of the equatorial ionospheric anomaly (EIA) at São José dos Campos (23.2°S, 45.0°W; dip latitude 17.6°S – Brazil) as a function of solar cycle. The period from September 2000 to August 2001 is used as representative of high solar activity (HSA) and the period from January 2006 to December 2006 as representative of low solar activity (LSA). This investigation shows that during HSA there is a maximum occurrence of F3-layer during summer time and a minimum during winter time. However, during LSA, there is no seasonal variation in the F3-layer occurrence. Also, the frequency of occurrence of the F3-layer during HSA is 11 times more than during LSA.  相似文献   

15.
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator.  相似文献   

16.
Understanding the local generation rate of equatorial spread-F (ESF) is important for forecasting ionospheric scintillation. Using the GPS ionospheric scintillation/TEC and VHF radar data during March-April and September-October from 2010 to 2014, the occurrence of ionospheric scintillation, TEC fast fluctuation, and backscatter plume were studied. Through analyzing the simultaneous occurrence of ionospheric scintillation, TEC fast fluctuation and backscatter plume, the local generation rate of ESF over Sanya was investigated. The results show that the monthly generation rate varies between 0% and 68%. A significant equinoctial asymmetry of local generation rate of ESF can be found in 2010, 2013 and 2014. The local generation rate of ESF increases from 2010 to 2014 during March-April, while it does not have similar trend during September-October. The plasma vertical drift influenced by solar activity has a significant impact on the monthly generation rate. The equinoctial asymmetry of plasma vertical drift may contribute a lot to the equinoctial asymmetry of the generation rate of ESF.  相似文献   

17.
The comparison of the IRI model with the foF2 distribution in the equatorial anomaly region obtained by topside sounding onboard the Interkosmos-19 satellite has been carried out. The global distribution of foF2 in terms of LT-maps was constructed by averaging Intercosmos-19 data for summer, winter, and equinox. These maps, in fact, represent an empirical model of the equatorial anomaly for high solar activity F10.7 ~ 200. The comparison is carried out for the latitudinal foF2 profiles in the characteristic longitudinal sectors of 30, 90, 210, 270, and 330°, as well as for the longitudinal variations in foF2 over the equator. The largest difference between the models (up to 60%) for any season was found in the Pacific longitudinal sector of 210°, where there are a few ground-based sounding stations. Considerable discrepancies, however, are sometimes observed in the longitudinal sectors, where there are many ground-based stations, for example, in the European or Indian sector. The discrepancies reach their maximum at 00 LT, since a decay of the equatorial anomaly begins before midnight in the IRI model and after midnight according to the Interkosmos-19 data. The discrepancies are also large in the morning at 06 LT, since in the IRI model, the foF2 growth begins long before sunrise. In the longitudinal variations in foF2 over the equator at noon, according to the satellite data, four harmonics are distinguished in the June solstice and at the equinox, and three harmonics in the December solstice, while in the IRI model only two and one harmonics respectively are revealed. In diurnal variations in foF2 and, accordingly, in the equatorial anomaly intensity, the IRI model does not adequately reproduce even the main, evening extremum.  相似文献   

18.
The Incoherent Scatter Radar measurement over Jicamarca, together with the IRI model-2007 measurements were compared with ground-based digisonde inferred E × B drift over Ilorin in the African region during year of solar minima (F10.7 = 81). Seasonally, Ilorin pre-reversal enhancement (PRE) had peak drift velocities of 7.2, 3.7 and 7.9 m/s for March equinox, September equinox and December solstice respectively, while Jicamarca drifts indicated 13.0, 10.5 and 5.2 m/s; as well as the IRI model with 14.3, 8.4 and 0.7 m/s in similar order. PRE value was insignificant during June solstice. The PRE magnitude of the IRI-model during the equinoxes is twice the value obtained at Ilorin. The daytime E × B drift peaked over Ilorin 1–2 h earlier than both the modeled and Jicamarca observations. This could be due to the difference in sunset time at the conjugate points corresponding to the altitude of the observation. During the evening time PRE, the respective correlation coefficients (R) for Vz–F10.7 relation over Jicamarca, Ilorin and the modeled observations are −0.5559, 0.4796 and −0.4979. Similarly, the Vz–Ap relation exhibit excellent anti-correlation coefficient (R = −0.8637) for the IRI-model, −0.4827 over Jicamarca and 0.3479 for Ilorin. Annual mean drift velocities over Jicamarca, Ilorin and IRI model measurements respectively are 10, 5.6 and 10 m/s for the peak PRE observation; 15, 16 and 21 m/s for the daytime pre-sunrise peak values; and −21, −9 and −16 m/s for the nighttime downward reversals. The root-mean square (RMS) deviation between IRI-model and the Ilorin drift between 2000 and 0500 h is 4.37, 2.03, 3.71 and 2.42 m/s for March equinox, June solstice, September equinox and December solstice respectively. For Jicamarca–Ilorin drift relation, RMS deviation is 5.48, 2.30, 3.47 and 1.27 m/s in the same order respectively. Annual hmF2 inferred drift over Ilorin during daytime is higher by a factor of ≈2 and 3 at Jicamarca and IRI model measurements respectively; and by a factor of ≈5 for both during the night-time period. The limitations in using hmF2 to infer drifts are discussed.  相似文献   

19.
We present the results of a comparative study of the equatorial spread F (ESF) and the F layer critical parameter, the base height of the F layer bottomside (hF) over the two equatorial sites, Ho Chi Minh City – HCM (dip latitude: 2.9°N) in Vietnam and Sao Luis – SL (dip latitude: ∼2°S) in Brazil. The study utilizes simultaneous data collected by a CADI at HCM and a digisonde at SL during the year 2002 with the monthly mean solar 10.7 cm flux (F10.7) varying from ∼120 to ∼185. This study focuses on the quiet time seasonal behavior of the F layer parameters in the two widely separated longitude sectors, and addresses the question as to what can we learn from such comparative studies with respect to the ambient ionospheric and thermospheric parameters that are believed to control the ESF generation and hence its longitudinal occurrence pattern. The observed differences/similarities in the diurnal and seasonal patterns of the F Layer height vis-à-vis the ESF occurrences are evaluated in terms of the known longitudinal differences in the F layer heights, thermospheric meridional winds and the geomagnetic peculiarities of the two sites.  相似文献   

20.
The electron density profiles in the bottomside F2-layer ionosphere are described by the thickness parameter B0 and the shape parameter B1 in the International Reference Ionosphere (IRI) model. We collected the ionospheric electron density (Ne) profiles from the FORMOSAT-3/COSMIC (F3/C) radio occultation measurements from DoY (day number of year) 194, 2006 to DoY 293, 2008 to investigate the daytime behaviors of IRI-B parameters (B0 and B1) in the equatorial regions. Our fittings confirm that the IRI bottomside profile function can well describe the averaged profiles in the bottomside ionosphere. Analysis of the equatorial electron density profile datasets provides unprecedented detail of the behaviors of B0 and B1 parameters in equatorial regions at low solar activity. The longitudinal averaged B1 has values comparable with IRI-2007 while it shows little seasonal variation. In contrast, the observed B0 presents semiannual variation with maxima in solstice months and minima in equinox months, which is not reproduced by IRI-2007. Moreover, there are complicated longitudinal variations of B0 with patterns varying with seasons. Peaks are distinct in the wave-like longitudinal structure of B0 in equinox months. An outstanding feature is that a stable peak appears around 100°E in four seasons. The significant longitudinal variation of B0 provides challenges for further improving the presentations of the bottomside ionosphere in IRI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号