首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this paper a global system of the magnetic field and current from the interaction of the solar wind plasma and the interstellar medium is modeled using a 3-D MHD simulation. The terminal shock, the heliopause and the outer shock are clearly determined in our simulation. In the heliosheath the toroidal magnetic field is found to increase with the distance from the sun. The magnetic field increases rapidly in the upstream region of the heliosheath and becomes maximum between the terminal shock and the heliopause. Hence a shell-type magnetic wall is found to be formed in the heliosheath. Because of this magnetic wall the radially expanding solar wind plasma changes its direction tailward in all latitudes except the equatorial region. Only the equatorial disk-like plasma flow is found to extend to the heliopause through the weak magnetic-field region around the equator. Two kinds of global current loops which sustain the toroidal magnetic field in the heliosphere are found in our simulation.The influence of the 11-year solar cycle variation of the magnetic polarity is also examined. It is found that the polarity of the toroidal magnetic field in the heliosheath switches at every solar cycle change. Hence the heliosheath is found to consist of such magnetized plasma bubbles. The neutral sheets are found to extend between such magnetized plasma bubbles in the 3-D heliosheath in a complicated form. The magnetic-pressure effect on the heliosheath plasma structure is also examined.  相似文献   

2.
We have developed a 2D semi-empirical model (Sittler and Guhathakurta 1999) of the corona and the interplanetary medium using the time independent MHD equations and assuming azimuthal symmetry, utilizing the SOHO, Spartan and Ulysses observations. The model uses as inputs (1) an empirically derived global electron density distribution using LASCO, Mark III and Spartan white light observations and in situ observations of the Ulysses spacecraft, and (2) an empirical model of the coronal magnetic field topology using SOHO/LASCO and EIT observations. The model requires an estimate of solar wind velocity as a function of latitude at 1 AU and the radial component of the magnetic field at 1 AU, for which we use Ulysses plasma and magnetic field data results respectively. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity V, temperature Teff, and heat flux Qeff which are derived from the equations of conservation of mass, momentum and energy, respectively, in the rotating frame of the Sun. The term "effective" indicates possible wave contributions. The model can be used as a planning tool for such missions as Solar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
4.
The occurrence of waves generated by pick-up of planetary neutrals by the solar wind around unmagnetized planets is an important indicator for the composition and evolution of planetary atmospheres. For Venus and Mars, long-term observations of the upstream magnetic field are now available and proton cyclotron waves have been reported by several spacecraft. Observations of these left-hand polarized waves at the local proton cyclotron frequency in the spacecraft frame are reviewed for their specific properties, generation mechanisms and consequences for the planetary exosphere. Comparison of the reported observations leads to a similar general wave occurrence at both planets, at comparable locations with respect to the planet. However, the waves at Mars are observed more frequently and for long durations of several hours; the cyclotron wave properties are more pronounced, with larger amplitudes, stronger left-hand polarization and higher coherence than at Venus. The geometrical configuration of the interplanetary magnetic field with respect to the solar wind velocity and the relative density of upstream pick-up protons to the background plasma are important parameters for wave generation. At Venus, where the relative exospheric pick-up ion density is low, wave generation was found to mainly take place under stable and quasi-parallel conditions of the magnetic field and the solar wind velocity. This is in agreement with theory, which predicts fast wave growth from the ion/ion beam instability under quasi-parallel conditions already for low relative pick-up ion density. At Mars, where the relative exospheric pick-up ion density is higher, upstream wave generation may also take place under stable conditions when the solar wind velocity and magnetic field are quasi-perpendicular. At both planets, the altitudes where upstream proton cyclotron waves were observed (8 Venus and 11 Mars radii) are comparable in terms of the bow shock nose distance of the planet, i.e. in terms of the size of the solar wind-planetary atmosphere interaction region. In summary, the upstream proton cyclotron wave observations demonstrate the strong similarity in the interaction of the outer exosphere of these unmagnetized planets with the solar wind upstream of the planetary bow shock.  相似文献   

5.
The most significant information about fields and plasmas in the outer solar system, based on observations by Pioneer 10 and 11 investigations, is reviewed. The characteristic evolution of solar wind streams beyond 1 AU has been observed. The region within which the velocity increases continuously near 1 AU is replaced at larger distances by a thick interaction region with abrupt jumps in the solar wind speed at the leading and trailing edges. These abrupt increases, accompanied by corresponding jumps in the field magnitude and in the solar wind density and temperature, consist typically of a forward and a reverse shock. The existence of two distinct corotating regions, separated by sharp boundaries, is a characteristic feature of the interplanetary medium in the outer solar system. Within the interaction regions, compression effects are dominant and the field strength, plasma density, plasma temperature and the level of fluctuations are enhanced. Within the intervening quiet regions, rarefaction effects dominate and the field magnitude, solar wind density and fluctuation level are very low. These changes in the structure of interplanetary space have significant consequences for the many energetic particles propagating through the medium. The interaction regions control the access to the inner solar system of relativistic electrons from Jupiter's magnetosphere. The interaction regions and shocks appear to be associated with an acceleration of solar protons to MeV energies. Flare-generated shocks are observed to be propagating through the outer solar system with constant speed, implying that the previously recognized deceleration of flare shocks takes place principally near the Sun. Radial gradients in the solar wind and interplanetary field parameters have been determined. The solar wind speed is nearly constant between 1 and 5 AU with only a slight deceleration of 30 km s+1 on the average. The proton flux follows an r +2 dependence reasonably well, however, the proton density shows a larger departure from this dependence. The proton temperature decreases steadily from 1 to 5 AU and the solar wind protons are slightly hotter than anticipated for an adiabatic expansion. The radial component of the interplanetary field falls off like r +2 and, on the average, the magnitude and spiral angle also agree reasonably well with theory. However, there is evidence, principally within quiet regions, of a significant departure of the azimuthal field component and the field magnitude from simple theoretical models. Pioneer 11 has obtained information up to heliographic latitudes of 16°. Observations of the interplanetary sector structure show that the polarity of the field becomes gradually more positive, corresponding to outward-directed fields at the Sun, and at the highest latitudes the sector structure disappears. These results confirm a prior suspicion that magnetic sectors are associated with an interplanetary current sheet surrounding the Sun which is inclined slightly to the solar equator.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

6.
The properties of different solar wind streams depend on the large scale structure of the coronal magnetic field. We present average values and distributions of bulk parameters (density, velocity, temperature, mass flux, momentum, and kinetic and thermal energy, ratio of thermal and magnetic pressure, as well as the helium abundance) as observed on board the Prognoz 7 satellite in different types of the solar wind streams. Maximum mass flux is recorded in the streams emanating from the coronal streamers while maximum thermal and kinetic energy fluxes are observed in the streams from the coronal holes. The momentum fluxes are equal in both types of streams. The maximum ratio of thermal and magnetic pressure is observed in heliospheric current sheet. The helium abundance in streams from coronal holes is higher than in streams from streamers, and its dependences on density and mass flux are different in different types of the streams. Also, the dynamics of -particle velocity and temperature relative to protons in streams from coronal holes and streamers is discussed.  相似文献   

7.
Forsyth  R.J.  Balogh  A.  Smith  E.J. 《Space Science Reviews》2001,97(1-4):161-164
We discuss the underlying direction of the heliospheric magnetic field measured by Ulysses in the latitude range 6° S-65° S by examining distributions of the magnetic field azimuthal angle with respect to the simple Parker spiral model. During the first Ulysses traversal of this latitude range in 1992–1994, while solar activity was declining, the shape of the distributions obtained at high latitudes in the fast solar wind differed from that at lower latitudes. In the present data set, obtained during rising solar activity, both field polarities are present at all latitudes and the peaks of the distributions agree with the predicted spiral direction to first approximation. However, compared to the first orbit, a significantly greater percentage of the observed field vectors have large deviations from the spiral direction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
9.
Energetic (0.1-16 keV/e) ion data from a plasma composition experiment on the ISEE-1 spacecraft show that Earth's plasma sheet (inside of 23 RE) always has a large population of H+ and He++ ions, the two principal ionic components of the solar wind. This population is the largest, in terms of both number density and spatial thickness, during extended periods of northward interplanetary magnetic field (IMF) and is then also the most "solar wind-like" in the sense that the He++/H+ density ratio is at its peak (about 3% on average in 1978 and 79) and the H+ and He++ have mean (thermal) energies that are in the ratio of about 1:4 and barely exceed the typical bulk flow energy in the solar wind. During geomagnetically active times, associated with southward turnings of the IMF, the H+ and He++ are heated in the central plasma sheet, and reduced in density. Even when the IMF is southward, these ions can be found with lower solar wind-like energies closer to the tail lobes, at least during plasma sheet thinning in the early phase of substorms, when they are often seen to flow tailward, approximately along the magnetic field, at a slow to moderate speed (of order 100 km s-1 or less). These tailward flows, combined with the large density and generally solar wind-like energies of plasma sheet H+ and He++ ions during times of northward IMF, are interpreted to mean that the solar wind enters along the tail flanks, in a region between the lobes and the central plasma sheet, propelled inward by ExB drift associated with the electric fringe field of the low latitude magnetopause boundary layer (LLBL). In order to complete this scenario, it is argued that the rapid (of order 1000 km s-1) earthward ion flows (mostly H+ ions), also along the magnetic field, that are more typically the precursors of plasma sheet "recovery" during substorm expansion, are not proof of solar wind entry in the distant tail, but may instead be a time-of-flight effect associated with plasma sheet redistribution in a dipolarizing magnetic field.  相似文献   

10.
The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were launched in 1972, 1974, and 1977, respectively. While these three spacecraft are all at compartively low heliographic latitudes compared with Ulysses, their observation span almost two solar cycles, a range of heliocentric distances from 1 to 57 AU, and provide a unique insight into the long-term variability of the global structure of the solar wind. We examine the spatial and temporal variation of average solar wind parameters and fluxes. Our obsevations suggest that the global structure of the outer heliosphere during the declining phase of the solar cycle at heliographic latitudes up to 17.5°N was charaterized by two competing phenomena: 1) a large-scale increase of solar wind density, temperature, mass flux, dynamic pressure, kinetic energy flux, and thermal enery flux with heliographic latitude, similar to the large-scale latitudinal gradient of velocity seen in IPS observations, 2) a small-scale decrease in velocity and temperature, and increase in density near the heliospheric current sheet, which is associated with a band of low speed, low temperature, and high density solar wind similar to that observed in the inner heliosphere.  相似文献   

11.
As the Ulysses spacecraft approaches its first pass under the south pole of the sun, it is an appropriate time to review our current knowledge and predictions regarding the three dimensional behaviour of the heliospheric magnetic field, in particular at high heliographic latitudes. Optical techniques for measuring the photospheric magnetic field and observations of coronal brightness structures provide indications of the behaviour of the source of the heliospheric field in the corona. As the coronal fields are carried out into the heliosphere by the solar wind, from Parker's model we would expect that the spiral field observed in the equatorial plane should gradually unwind with latitude leading to open, approximately radial, field lines over the polar regions. Predictions of departures from, and models extending this simple picture are discussed. Both the Pioneer and Voyager spacecraft have spent brief periods in the regions above the maximum latitude of the heliospheric current sheet-relevant results from these missions are reviewed as well as results from the early stages of the out-of-ecliptic phase of the Ulysses mission. The configuration of the coronal magnetic field exhibits a strong dependence on the phase of the solar activity cycle. While the forthcoming Ulysses polar passes take place near to solar minimum, the different conditions which might be encountered on a second orbit of the sun at solar maximum are described.  相似文献   

12.
We report observations of radial and latitudinal gradients of Ulysses plasma parameters. The solar wind velocity increased rapidly with latitude from 0° to 35°, then remained approximately constant at higher latitudes. Solar wind density decreased rapidly from 0° to 35° of latitude, and also was approximately constant beyond that latitude. The mass flux similarly decreased away from the equator (but less than the density), whereas the momentum flux was relatively constant. The radial gradient of the entropy at high latitude indicated a value for the polytrope index of about 1.72 (close to adiabatic); the in-ecliptic estimates of radial gradients for temperature and entropy may be biased by temporal variation. A striking increase in the alpha particle-proton velocity difference with latitude is found.  相似文献   

13.
We present the results from a study of the variations of the cosmic-ray intensity with time, heliographic latitude, and longitude, and for varying interplanetary conditions, using our three-dimensional, time-dependent computer code for cosmic-ray transport in the heliosphere. Our code also produces a solar-wind and interplanetary magnetic field (IMF) configuration which is compared with observations. Because of the fully threedimensional nature of the model calculations, we are able to model time variations which would be expected to be observed along Ulysses's trajectory as it moves to high latitudes. In particular we can model the approximately 13-and 26-day solar-rotation induced variations in cosmic rays, solar wind and IMF, as a function of increasing heliographic latitude, as one moves poleward of the interplanetary current sheet. Our preliminary model results seem to be in general form quite similar to published data, but depend on the physical parameters used such as cosmic-ray diffusion coefficients, boundary conditions, and the nature of the solar wind and IMF and current sheet.  相似文献   

14.
Simulations of coronal mass ejections (CMEs) evolving in the interplanetary (IP) space from the Sun up to 1 AU are performed in the framework of ideal magnetohydrodynamics (MHD) by the means of a finite-volume, explicit solver. The aim is to quantify the effect of the background solar wind and of the CME initiation parameters, such as the initial magnetic polarity, on the evolution and on the geo-effectiveness of CMEs. First, three different solar wind models are reconstructed using the same numerical grid and the same numerical scheme. Then, different CME initiation models are considered: Magnetic foot point shearing and magnetic flux emergence. For the fast CME evolution studies, a very simple CME model is considered: A high-density and high-pressure magnetized plasma blob is superposed on a background steady state solar wind model with an initial velocity and launch direction. The simulations show that the initial magnetic polarity substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory (and thus, the geo-effectiveness).  相似文献   

15.
The solar wind evolves as it moves outward due to interactions with both itself and with the circum-heliospheric interstellar medium. The speed is, on average, constant out to 30 AU, then starts a slow decrease due to the pickup of interstellar neutrals. These neutrals reduce the solar wind speed by about 20% before the termination shock (TS). The pickup ions heat the thermal plasma so that the solar wind temperature increases outside 20–30 AU. Solar cycle effects are important; the solar wind pressure changes by a factor of 2 over a solar cycle and the structure of the solar wind is modified by interplanetary coronal mass ejections (ICMEs) near solar maximum. The first direct evidences of the TS were the observations of streaming energetic particles by both Voyagers 1 and 2 beginning about 2 years before their respective TS crossings. The second evidence was a slowdown in solar wind speed commencing 80 days before Voyager 2 crossed the TS. The TS was a weak, quasi-perpendicular shock which transferred the solar wind flow energy mainly to the pickup ions. The heliosheath has large fluctuations in the plasma and magnetic field on time scales of minutes to days.  相似文献   

16.
Theoretical studies of a field-free plasma incident upon a magnetic dipole lead to a closed magnetosphere with two neutral points in the noon magnetic meridian, at a latitude of ± 70°–75° and a geocentric distance of approximately 10 RE. The position of the neutral points with respect to the dipole axis is not greatly affected by the angle of incidence of the solar wind. Although the field magnitude near the neutral points is only a fraction of the dipole field, the direction is seen to reverse on opposite sides of the neutral point. Near the boundary the field direction is parallel to the boundary and tends to point towards the neutral point in the Northern hemisphere.  相似文献   

17.
We describe the Genesis mission solar-wind sample collection period and the solar wind conditions at the L1 point during this 2.3-year period. In order to relate the solar wind samples to solar composition, the conditions under which the samples were collected must be understood in the context of the long-term solar wind. We find that the state of the solar wind was typical of conditions over the past four solar cycles. However, Genesis spent a relatively large fraction of the time in coronal-hole flow as compared to what might have been expected for the declining phase of the solar cycle. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) are used to determine the effectiveness of the Genesis solar-wind regime selection algorithm. The data collected by SWICS confirm that the Genesis algorithm successfully separated and collected solar wind regimes having distinct solar origins, particularly in the case of the coronal hole sample. The SWICS data also demonstrate that the different regimes are elementally fractionated. When compared with Ulysses composition data from the previous solar cycle, we find a similar degree of fractionation between regimes as well as fractionation relative to the average photospheric composition. The Genesis solar wind samples are under long-term curation at NASA Johnson Space Center so that as sample analysis techniques evolve, pristine solar wind samples will be available to the scientific community in the decades to come. This article and a companion paper (Wiens et al. 2013, this issue) provide post-flight information necessary for the analysis of the Genesis array and foil solar wind samples and the Genesis solar wind ion concentrator samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).  相似文献   

18.
利用考虑行星际磁场作用的磁流体动力学模型,建立了磁帆三维数值模拟方法,对计算方法的可靠性进行了验证,发现了线圈尾部的磁重联现象,研究了太阳风来流速度、等离子体离子数密度以及攻角对磁帆推进性能的影响。得出以下结论:不同速度、不同离子数密度的太阳风主要通过改变z方向电流的大小改变洛伦兹力,进而影响磁帆的推进性能:太阳风离子数密度恒定时,随着来流速度由30 km/s逐渐增大至75 km/s,z方向电流最大值由4 205 A/m2增至14 709 A/m2,磁帆所受推力由3.39 N增至13.40 N;太阳风来流速度恒定时,随着离子数密度由1.8×1019 m-3增大至4.5×1019 m-3,z方向电流最大值由6 039 A/m2增至10 585 A/m2,磁帆所受推力由6.62 N增至12.27 N。磁帆攻角变化,主要通过磁场构型的变化影响磁帆推进性能:攻角为0°和90°时的磁层半径分别为0.14 m和0.18 m,...  相似文献   

19.
Data obtained by the Ulysses magnetometer and solar wind analyzer have been combined to study the properties of magnetic holes in the solar wind between 1 and 5.4 AU and to 23° south latitude. Although the plasma surrounding the holes was generally stable against the mirror instability, there are indications that the holes may have been remnants of mirror mode structures created upstream of the points of observation. Those indications include: (1) For the few holes for which proton or alpha-particle pressure could be measured inside the hole, the ion thermal pressure was always greater than in the plasma adjacent to the holes. (2) The plasma surrounding many of the holes was marginally stable for the mirror mode, while the plasma environment of all the holes was significantly closer to mirror instability than was the average solar wind. (3) The plasma containing trains of closely spaced holes was closer to mirror instability than was the plasma containing isolated holes. (4) The near-hole plasma had much higher ion (ratio of thermal to magnetic pressure) than did the average solar wind.  相似文献   

20.
The large-scale coronal magnetic fields of the Sun are believed to play an important role in organizing the coronal plasma and channeling the high and low speed solar wind along the open magnetic field lines of the polar coronal holes and the rapidly diverging field lines close to the current sheet regions, as has been observed by the instruments aboard the Ulysses spacecraft from March 1992 to March 1997. We have performed a study of this phenomena within the framework of a semi-empirical model of the coronal expansion and solar wind using Spartan, SOHO, and Ulysses observations during the quiescent phase of the solar cycle. Key to this understanding is the demonstration that the white light coronagraph data can be used to trace out the topology of the coronal magnetic field and then using the Ulysses data to fix the strength of the surface magnetic field of the Sun. As a consequence, it is possible to utilize this semi-empirical model with remote sensing observation of the shape and density of the solar corona and in situ data of magnetic field and mass flux to predict values of the solar wind at all latitudes through out the solar system. We have applied this technique to the observations of Spartan 201-05 on 1–2 November, 1998, SOHO and Ulysses during the rising phase of this solar cycle and speculate on what solar wind velocities Ulysses will observe during its polar passes over the south and the north poles during September of 2000 and 2001. In order to do this the model has been generalized to include multiple streamer belts and co-located current sheets. The model shows some interesting new results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号