首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distributions with excess numbers of superthermal particles are common in space environments. They are well modelled by the isotropic kappa distribution, or, where magnetic effects are important, the kappa-Maxwellian. This paper presents a review of some studies of electrostatic and electromagnetic waves in such plasmas, based on the associated generalized plasma dispersion functions, Z κ and Z κM. In particular, the effects of low values of κ are considered, i.e. strongly accelerated distribution functions. Recently the full susceptibility tensor for oblique propagation of electromagnetic waves in a kappa-Maxwellian magnetoplasma has been established and has been applied to the study of whistler waves.  相似文献   

2.
Rempel  E.L.  Chian  A.C.-L.  Borotto  F.A. 《Space Science Reviews》2003,107(1-2):503-506
Nonthermal magnetospheric radio emissions provide the radio signatures of solar-terrestrial connection and may be used for space weather forecasting. A three-wave model of auroral radio emissions at the fundamental plasma frequency was proposed by Chian et al. (1994) involving resonant interactions of Langmuir, whistler and Alfvén waves. Chaos can appear in the nonlinear evolution of this three-wave process in the magnetosphere. We discuss two types of intermittency in radio signals driven by temporal chaos: the type-I Pomeau-Manneville intermittency and the interior crisis-induced intermittency. Examples of time series for both types of intermittency are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
We discuss quasi-static and dynamic models of the magnetotail response to perturbations imposed by the solar wind, focusing particularly on the formation of thin current sheets, their structure and breakup.  相似文献   

4.
A dependence of the polar cap magnetic flux on the interplanetary magnetic field and on the solar wind dynamic pressure is studied. The model calculations of the polar cap and auroral oval magnetic fluxes at the ionospheric level are presented. The obtained functions are based on the paraboloid magnetospheric model calculations. The scaling law for the polar cap diameter changing for different subsolar distances is demonstrated. Quiet conditions are used to compare theoretical results with the UV images of the Earth’s polar region obtained onboard the Polar and IMAGE spacecrafts. The model calculations enable finding not only the average polar cap magnetic flux but also the extreme values of the polar cap and auroral oval magnetic fluxes. These values can be attained in the course of the severe magnetic storm. Spectacular aurora often can be seen at midlatitude during severe magnetic storm. In particularly, the Bastille Day storm of July 15–16, 2000, was a severe magnetic storm when auroral displays were reported at midlatitudes. Enhancement of global magnetospheric current systems (ring current and tail current) and corresponding reconstruction of the magnetospheric structure is a reason for the equatorward displacement of the auroral zone. But at the start of the studied event the contracted polar cap and auroral oval were observed. In this case, the sudden solar wind pressure pulse was associated with a simultaneous northward IMF turning. Such IMF and solar wind pressure behavior is a cause of the observed aurora dynamics.  相似文献   

5.
6.
It is a crucial issue to know where magnetic reconnection takes place in the near-Earth magnetotail for substorm onsets. It is found on the basis of Geotail observations that the factor that controls the magnetic reconnection site in the magnetotail is the solar wind energy input. Magnetic reconnection forms close to (far from) the Earth in the magnetotail for high (low) solar wind energy input conditions.With the early Vela spacecraft observations, it was believed that magnetic reconnection started inside the Vela position, likely at 15 RE. The later ISEE/IRM observations put magnetic reconnection beyond 20 RE. The Vela event studies were made for highly active conditions, while the ISEE/IRM survey studies were made for moderate or quiet conditions. The finding of the factor that controls the site of magnetic reconnection in the magnetotail resolves the apparent discrepancy among various spacecraft results, and suggests solar cycle variation of the magnetotail reconnection site.  相似文献   

7.
The Hermean magnetosphere is likely to contain a number of wave phenomena. We briefly review what little is known so far about fields and waves around Mercury. We further discuss a number of possible phenomena, including ULF pulsations, acceleration-related radiation, bow shock waves, bremsstrahlung (or braking radiation), and synchrotron radiation. Finally, some predictions are made as to the likelihood that some of these types of wave emission exist.  相似文献   

8.
The possibility of remote diagnostics of coronal structures with impulsively-generated short-period fast magnetoacoustic wave trains is demonstrated. An initially broad-band, aperiodic fast magnetoacoustic perturbation guided by a 1D plasma inhomogeneity develops into a quasi-periodic wave train with a well-pronounced frequency and amplitude modulation. The quasi-periodicity results from the geometrical dispersion of the modes, determined by the transverse profile of the loop, and hence contains information about the profile. Wavelet images of the wave train demonstrate that their typical spectral signature is of a “crazy tadpole’’ shape: a narrow spectrum tail precedes a broad-band head. The instantaneous period of the oscillations in the wave train decreases gradually with time, with a mean value of several seconds for typical coronal values. The period and the spectral amplitude evolution are determined by the steepness of the transverse density profile and the density contrast ratio in the loop, which offers a tool for estimation of the sub-resolution structuring of the corona.  相似文献   

9.
Cassini Plasma Spectrometer Investigation   总被引:1,自引:0,他引:1  
《Space Science Reviews》2004,114(1-4):1-112
The Cassini Plasma Spectrometer (CAPS) will make comprehensive three-dimensional mass-resolved measurements of the full variety of plasma phenomena found in Saturn’s magnetosphere. Our fundamental scientific goals are to understand the nature of saturnian plasmas primarily their sources of ionization, and the means by which they are accelerated, transported, and lost. In so doing the CAPS investigation will contribute to understanding Saturn’s magnetosphere and its complex interactions with Titan, the icy satellites and rings, Saturn’s ionosphere and aurora, and the solar wind. Our design approach meets these goals by emphasizing two complementary types of measurements: high-time resolution velocity distributions of electrons and all major ion species; and lower-time resolution, high-mass resolution spectra of all ion species. The CAPS instrument is made up of three sensors: the Electron Spectrometer (ELS), the Ion Beam Spectrometer (IBS), and the Ion Mass Spectrometer (IMS). The ELS measures the velocity distribution of electrons from 0.6 eV to 28,250 keV, a range that permits coverage of thermal electrons found at Titan and near the ring plane as well as more energetic trapped electrons and auroral particles. The IBS measures ion velocity distributions with very high angular and energy resolution from 1 eV to 49,800 keV. It is specially designed to measure sharply defined ion beams expected in the solar wind at 9.5 AU, highly directional rammed ion fluxes encountered in Titan’s ionosphere, and anticipated field-aligned auroral fluxes. The IMS is designed to measure the composition of hot, diffuse magnetospheric plasmas and low-concentration ion species 1 eV to 50,280 eV with an atomic resolution M/ΔM ∼70 and, for certain molecules, (such asN 2 + and CO+), effective resolution as high as ∼2500. The three sensors are mounted on a motor-driven actuator that rotates the entire instrument over approximately one-half of the sky every 3 min.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

10.
Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We first discuss the basic properties of standard single-fluid shocks. Cosmological plasma shocks are expected to be collisionless. We then review the plasma processes responsible for the microscopic structure of collisionless shocks. A tiny fraction of the particles crossing the shock is injected into the non-thermal energetic component that could get a substantial part of the ram pressure power dissipated at the shock. The energetic particles penetrate deep into the shock upstream producing an extended shock precursor. Scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are discussed. We show that the multi-fluid nature of collisionless shocks results in excessive gas compression, energetic particle acceleration, precursor gas heating, magnetic field amplification and non-thermal emission. Multi-fluid shocks provide a reduced gas entropy production and could also modify the observable thermodynamic scaling relations for clusters of galaxies.  相似文献   

11.
The plasmasphere is the cold, dense innermost region of the magnetosphere that is populated by upflow of ionospheric plasma along geomagnetic field lines. Driven directly by dayside magnetopause reconnection, enhanced sunward convection erodes the outer layers of the plasmasphere. Erosion causes the plasmasphere outer boundary, the plasmapause, to move inward on the nightside and outward on the dayside to form plumes of dense plasma extending sunward into the outer magnetosphere. Coupling between the inner magnetosphere and ionosphere can significantly modify the convection field, either enhancing sunward flows near dusk or shielding them on the night side. The plasmaspheric configuration plays a crucial role in the inner magnetosphere; wave-particle interactions inside the plasmasphere can cause scattering and loss of warmer space plasmas such as the ring current and radiation belts.  相似文献   

12.
Magneto-gravity Waves Trapped in the Lower Solar Corona   总被引:1,自引:0,他引:1  
The possibility of trapped magneto-gravity waves in the lower solar corona with an open magnetic field is discussed. Intensity variations and/or Doppler shifts of relevant UV, EUV and x-ray spectral lines in the chromosphere, transition region and lower corona may reveal the existence of such low-frequency modes (with periods longer than ∼ 1.5 hour). The spectrum may be either discrete or continuous depending on the reflection property of the narrow transition region. These modes can be utilized to probe the dynamics of the upper chromosphere, transition region and lower corona; they may also play an important role in coronal heating. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
14.
    
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20RS (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 RS every 2–3 h (every ∼10 min from ∼20 RS). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

15.
This paper is devoted to the problem of particle acceleration in the closest to the Sun Hermean magnetosphere. We discuss few available observations of energetic particles in Mercury environment made by Mariner-10 in 1974–1975 during Mercury flyby’s and by Helios in 1979 upstream of the Hermean bow shock. Typically ions are non-adiabatic in a very dynamic and compact Mercury magnetosphere, so one may expect that particle acceleration will be very effective. However, it works perfectly for electrons, but for ions the scale of magnetosphere is so small that it allows their acceleration only up to 100 keV. We present comparative analysis of the efficiency of various acceleration mechanisms (inductive acceleration, acceleration by the centrifugal impulse force, stochastic acceleration in a turbulent magnetic fields, wave–particle interactions and bow shock energization) in the magnetospheres of the Earth and Mercury. Finally we discuss several points which need to be addressed in a future Hermean missions.  相似文献   

16.
介绍了超短波电台自动检测系统与故障诊断系统的功能,并根据功能要求进行了硬件电路的设计,采取面向信号的ATLAS语言进行软件设计和建立在专家知识输入故障推理模型.该系统经使用证明,检测结果精确,检测效率较高.  相似文献   

17.
Kelvin-Helmholtz Instability (KHI) is an MHD-scale instability that grows in a velocity shear layer such as the low-latitude boundary layer of the magnetosphere. KHI is driven unstable when a velocity shear is strong enough to overcome the stabilization effect of magnetic field. When the shear is significantly strong, vortices in the nonlinear stage of KHI is so rolled-up as to situate magnetospheric plasma outward of the magnetosheath plasma and vice versa. The big question is if such highly rolled-up vortices contribute significantly to the plasma transport across the boundary and to the filling of the plasma sheet by cool magnetosheath component, which is observed under northward Interplanetary Magnetic Field (IMF) condition. Here we review our recent results from two-fluid simulations of MHD-scale KHI with finite electron inertia taken into account. The results indicate that there is coupling between the MHD-scale dynamics and electron-scale dynamics in the rolled-up stage of the vortices. While the details differ depending on the initial magnetic geometry, the general conclusion is that there is significant modification of the MHD-scale vortex flow pattern via coupling to the micro-physics. The kick-back from the parasitic micro-physics enhances highly the potential for large-scale plasma mixing of the parent MHD-scale vortices, which is prohibited by definition in ideal-MHD. We also review our recent 3-D MHD simulation results indicating that KHI vortex can indeed roll-up in the magnetotail-flank situation despite the strong stabilization by the lobe magnetic field. These results encouraged us to search for evidence of rolled-up vortices in the Cluster formation flying observations. As reviewed in this paper, a nice event was found during northward IMF interval. This interval is when the plasma transport via large scale reconnection becomes less efficient. The finding supports the argument that KHI is playing some role in transporting solar wind into the magnetosphere when the normal mode of transport cannot dominate.  相似文献   

18.
温度、密度对目标等离子体隐身效果影响的FDTD分析   总被引:1,自引:0,他引:1  
采用等温近似,给出覆盖目标的不均匀的、各项同性的、热的、碰撞的、等离子体的电磁反射的三维FDTD算法的公式。在一维条件下,计算了不同密度分布、不同温度的等离子体对电磁波的反射系数。给出了温度、密度对电磁波在等离子体中的碰撞吸收的影响。结果显示,增大等离子体的温度和密度将有利于等离子体对电磁波的吸收,增大吸收的带宽,减小等离子体覆盖目标对电磁波的反射。  相似文献   

19.
20.
D. J. Wu 《Space Science Reviews》2005,121(1-4):333-342
Nonthermal electrons play a major role during solar flares since not only they contain a large amount of the released energy but also they provide important information of the flaring physics through their nonthermal radiation in radio and hard X-ray bands. In a recent work Wu (Phys. Plasmas 10 (2003) 1364) proposed that dissipative solitary kinetic Alfvén wave (DSKAW) with a local shock-like structure could provide an efficient acceleration mechanism for energetic electrons in a low-β plasma. In the present paper dynamical characteristics of the DSKAW acceleration mechanism in solar coronal plasmas are studied and its application to the acceleration of flaring electrons is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号