首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
聚氨酯弹性体,又称为聚氨基甲酸弹性体,是一种介于塑料和橡胶之间的低模量的弹性材料,具有优良的缓冲、绝缘、耐低温等特性,还具有耐磨、耐油、耐臭氧、耐辐射等优点。采用一步法浇注成型的低模量聚氨酯弹性体,应用于电源控制板和程序控制板等印制板组件的缓冲封装中,取得了很好的技术和经济效果。  相似文献   

2.
碳化硅颗粒增强铝基复合材料(Si Cp/Al)因具有轻质、高模量、高导热性能以及良好的尺寸稳定性等特点,有望成为新一代空间相机用结构材料。文章针对我国自主研发的新一代空间相机用碳化硅颗粒增强铝基复合材料开展了空间环境(包括高低温循环、粒子辐照、原子氧和真空紫外辐照)地面模拟试验以及湿热环境试验,并对试验前后材料的力学及热物理性能进行了比对测试。结果表明材料的屈服强度、抗拉强度、弹性模量的变化均不超过2%,平均线膨胀系数的变化不超过1×10~(-6)℃~(-1),而比热容和导热系数则最高分别降低了17%和28%。之后对比研究了不同环境效应对材料性能的影响情况,并对比热容和导热系数发生明显变化的原因和内在机理进行了初步分析。  相似文献   

3.
为获得某弹载天线热管PCM复合热控装置的相控阵天线的温控性能,建立了其整机数学模型,并基于DSC测试数据,采用有效热容法对材料的相变过程进行模拟。根据T/R组件安装面的最高温度和储热器内相变材料的相变完成情况,研究了相变材料导热系数和翅片数对整机热控性能的影响。研究发现,使用较高导热系数的相变材料与较多的铜翅片数量有利于提高装置的热控性能,且两参数效益可以互补。最后根据研究获得的综合优选参数,制作了试验样机,验证了参数设置的合理性和可行性。  相似文献   

4.
张建可 《宇航学报》2010,31(10):2411-2416
导热脂的低温热导率是研究宇航用导热脂的重要参数,“瞬态热线法”是常用的测量方法之一,但受使用条件限制,实际应用中容易产生较大误差。本文提出采用改进的“瞬态热线法”即对标准流体与试样进行测量比对的方法,用于导热脂低温热导率的测量,减小了测试方法的系统误差,因而保证了测量的相对误差小于6%。在测量装置上,采用廉价的康铜丝取代了传统使用的铂丝,设计采用了容易进行拆洗的低温试验装置。文章讨论了影响导热脂低温热导率的因素。提出测量加热时间要在2 s~3 s之内以防止对流,分析了比对状态的误差影响,并给出了两种导热脂低温热导率与温度关系曲线。分析表明本文提出的试验方法可以满足宇航用导热脂研究的需求
  相似文献   

5.
对端羧基聚丁二烯丙烯睛(CTBN)液体共聚物为粘合剂的极低燃速的复合固定推进剂进行了论证。本计划的目的是,研制一种用于燃气发生器的(StarterCartridge)、压力在70公斤/厘米~2(100磅/英寸~2)下,燃速指标为1.78毫米/秒(0.070英寸/秒)的推进剂。选择了双环氧交链系统的低丙烯睛 CTBN 粘合剂,因为它的老化性能和工艺性能较之一般的粘合剂材料优越。在改进的 MK6气体发生器装置中,用浇注单孔圆柱形的、端面包复和外圆柱面包复的推进剂药柱进行弹道性能评定。用50%双级配的过氯酸胺、30%CTBN 粘合剂和20%装填密度高的硝基胍组成的推进剂配方成功地满足了设计要求,在要求的压力与温度25℃(77°F)下,达到了1.70毫米/秒(0.067英寸/秒)的燃速指标。当压力在35公斤/厘米~2(500磅/英寸~2)到70公斤/厘米~2(1000磅/英寸~2)范围内,温度在-54℃和74℃之间时,所测得的温度敏感系数π=0.36%/℃(0.20%/°F)。通过初步的力学性能和物理性能试验表明,此种类型的药柱设计在工作条件下,是合格的。因此,这种推进剂用于各种低燃速的场合似乎是有吸引力的。  相似文献   

6.
针对固体火箭发动机复合材料壳体多材料界面可能产生脱粘的问题,对钛合金/碳纤维复合材料(CFRP)层/橡胶绝热层/胶粘剂的界面粘接性能进行研究。对比不同胶粘剂粘接的钛合金与橡胶(丁腈橡胶(NBR)、三元乙丙橡胶(EPDM))、CFRP与橡胶、CFRP与钛合金层间剪切强度试验测试结果及破坏形式,并结合吸附理论、橡胶与胶粘剂分子结构、反应机理分析测试结果产生差异的原因。结果表明,采用730胶粘接的NBR/钛合金、NBR/CFRP层间强度明显高于Chemlok 252胶粘接的EPDM/钛合金、EPDM/CFRP层间强度,分别提高了224.24%、102.91%。对于CFRP/钛合金界面,Chemlok 252胶粘接后层间强度反而比730胶粘接的层间强度提高了92.34%,这是由于730胶溶剂挥发后为弹性体,层间剪切强度主要是弹性体本身强度,而Chemlok 252挥发后为薄膜,层间强度主要由环氧树脂提供。  相似文献   

7.
碳基复合相变装置以高导热碳基复合相变材料为主要储能和导热载体,利用高导热膨胀石墨强化导热,运用相变材料的潜热实现热量的削峰填谷,可有效抑制短时大热耗单机的温升,减少单机非工作时段所需的补偿功耗,节省卫星的重量资源和功耗资源。主要介绍了一种高导热碳基复合相变装置,结合复合相变装置与卫星结构板优化的综合散热系统,用于解决星载短时工作的大热耗单机温度控制问题。通过理论计算与热仿真分析相结合,对复合相变装置进行了优化设计;通过开展专项试验对复合相变装置的热性能和空间环境适应性进行了充分验证;并在整星真空热平衡试验中,验证了复合相变装置对大热耗单机的温度控制效果。  相似文献   

8.
文章利用新型的原子氧环境模拟设备进行真空和原子氧试验,通过质量损失测量和FT-IR分析,对试样的质量损失率(SAML)和表面成分的变化进行了研究。试验结果表明:真空环境会导致材料产生质量损失,4种材料中真空质损最大相差24倍;原子氧作用导致聚合物材料产生质量损失,4种材料中质量损失率最大相差25倍;原子氧与有机硅物质反应能够形成保护层,可以抑制原子氧对材料内部的进一步侵蚀。FT-IR分析结果表明,原子氧作用导致环氧材料的-N消失,O元素百分比含量升高,硅橡胶的化学键被破坏,并导致新的O-H和C-H的生成。  相似文献   

9.
三元乙丙橡胶(EPDM)由于具有导热系数低的特点,在测量其背面温度时会产生比较大的测量误差.为减少测量误差,在热电偶测温端与被测表面之间增加具有高热导率的金属片作为集热片,对加与不加集热片、集热片选取不同材料(铜片和铝片),以及同厚度不同直径与同直径不同厚度分别进行了试验研究和瞬态传热数值计算,分析了集热片材料与尺寸对温度测量准确性及动态响应的影响.计算结果与试验结果吻合较好,表明铝片比铜片响应稍快,但强度没有铜片高,从而选用铜片;直径大与厚度小的铜片比直径小与厚度大的铜片响应快.  相似文献   

10.
Al2O3型碳/陶功能梯度材料烧蚀试验研究   总被引:1,自引:0,他引:1  
Al2O3型影陶功能梯度材料作为一种新型喷管热防护材料,其具有导热系数较低及良好的隔热性能。在氧乙炔烧蚀试验条件下该材料有很好的耐烧蚀性,但由于发动机内的工作环境更为恶劣,为了更好地反映材料在固体火箭发动机中的烧蚀情况,该研究工作采用了试验发动机进行烧蚀试验。结果表明,试验发动机中获得的烧蚀率数据高于氧乙炔试验数据。文中在试验基础上分析了Al2O3型影陶功能梯度材料在发动机工作条件下的烧蚀性能及导热性能。  相似文献   

11.
为了精确测量材料在不同入射电子能量和入射电子角度下的二次电子产额(secondary electron yield, SEY)以及二次电子能谱,研制了收集极为球形结构的SEY测量装置。首先介绍了装置的构成、测量原理及中和方法,并对测得的信号波形进行了分析。随后,测量了Cu材料和Al2O3薄膜材料的SEY值和二次电子能谱。结果表明:不同入射电子能量下SEY值的标准偏差分别小于0.055(Cu)和0.126(Al2O3);不同入射电子角度下SEY值与理论模型符合的很好,拟合R2值为0.998 64(Cu);出射的二次电子能量绝大部分集中在10eV(Cu)和20eV(Al2O3)以下,符合相关理论预期。  相似文献   

12.
当前固体火箭发动机制造过程中推进剂生产质量波动大,而浇注速度及浇注量是影响装药质量的关键工艺参数。针对在混合锅结构限制、药量巨大以及热固性推进剂粘度随时间变化而变化的工艺特点导致壳体内无法布置传感器直接测量浇注速度和浇注量等关键参数的问题,通过机器学习技术,利用可直接测量的与浇注速度和浇注量相关的其他工艺参数以及设备运行参数等大量试验数据构建浇注速度和浇注量的在线预测模型,实现其间接软测量。首先,采集可直接测得的实测工艺参数作为训练和测试数据;然后,结合浇注花板的具体结构,通过支持向量机和极限学习机等非线性回归的机器学习方法训练数据,建立壳体花板出口处的浇注速度和浇注量回归模型,用于在线预测;最后,在实验室环境下的缩比模拟器上进行浇注速度和浇注量检测验证,表明该方法为装药浇注工艺过程的数字化和智能化可行性提供了依据。  相似文献   

13.
针对空间千瓦级瞬时大热耗载荷的散热问题,提出了一种"平板蒸汽腔(Vapor Chamber,VC)+相变装置(Phase Changed Material,PCM)+环路热管(Loop Heat Pipe,LHP)"的一体化通用级联散热设计方法。以被动控温为主,采用当量导热系数大于2000W/(m·K)的VC强化传热,进而通过3D打印的导热蜂窝结构PCM强化热量的储存和释放。以某瞬时热耗达3000W的空间载荷为例进行散热设计,通过热分析和热试验验证,结果表明:热源45s和60s工作时间内最大温升分别为12.5℃和19.6℃,温度控制在10~40℃的范围内;修正后的热分析模型与热试验结果对比,绝对误差为1℃左右,相对误差为4.85%。验证了设计方法的正确性,可为同类空间千瓦级瞬时大热耗载荷的热设计提供参考。  相似文献   

14.
孙创  夏新林  任德鹏  邓湘金 《宇航学报》2009,30(6):2431-2435
针对双探针法测量月壤热物性过程,建立了探针与月壤组成的多层介质在太阳辐照加 热与月表辐射散热作用下的二维非稳态传热模型。通过数值模拟,分析了探针长度、直径、 中心间距和加热功率等因素对测量结果的影响。结果表明,若月壤导热系数在0.01W/
(m·K)左右,则月壤的弱导热性是双探针探测设计中需考虑的主要因素。在上述分析的基 础上,设计了双探针结构,对一导热性能较差的松散介质进行了地面测量实验,通过试错法 反演测量数据得到该介质的热扩散率与导热系数,为进一步应用研究提供了参考。  相似文献   

15.
使用T3Ster对宇航电子元器件内部热特性的测量   总被引:1,自引:0,他引:1  
文章介绍了使用MicReD公司的热测试仪33Ster测量元器件内部热特性的方法。T3Ster测试仪可以测试各类IC、LED、散热器、热管等电子器件的热特性以及PCB、导热材料等的热阻、热客及导热系数、接触热阻等热特性。使用33Ster测试仪对某航天器用电子元器件内部热特性进行了测量,并与器件资料中的热特性数据进行比对,二者相对误差为0.07%,验证了q3Ster测试仪具有测试高可靠度要求的宇航级电子元器件热特性的能力。为宇航电子元器件的热设计与热分析提供重要的试验依据。  相似文献   

16.
钨渗铜材料性能的研究   总被引:3,自引:0,他引:3  
本文较系统地介绍了钨渗铜材料的工艺、物理、机械和使用性能;探索了拉伸强度、弹性模量、比热、导热系数、热胀系数随试验温度的变化规律.另外,用扫描电镜对热试车后实物进行了分析研究,并证实渗入钨骨架里的铜,首先从接触火焰侧内壁开始挥发,层层递进,起到发汗冷却作用.  相似文献   

17.
高稳定结构对温度场的稳定性、均匀性有较高要求,为达到在轨温度场精稳控制,文章提出了一种基于高导热柔性材料的分区控温设计方法,采用面内导热系数达750W/(m·K)的柔性石墨材料,进行了二维均温扩热,增强结构自身导热能力,减小温度梯度;强化隔热设计,减小外部热扰动对温度场的影响。以某测绘卫星载荷适配结构为例,进行了分析及试验验证,结果表明:全生命周期内,载荷适配结构核心部件温度控制在20.0~24.5℃范围内,温度波动≤0.4℃,温度梯度≤4℃,同时验证了设计方法的正确性。该方法可为有高精度控温需求的部件的热设计提供参考。  相似文献   

18.
热防护系统分区协调耦合推进方法   总被引:1,自引:0,他引:1       下载免费PDF全文
黄杰  姚卫星  陈炎  孔斌 《宇航学报》2018,39(1):27-34
提出一种适用于热防护系统(TPS)热控性能研究的分区协调耦合推进方法,其中采用有限体积法(FVM)进行气动热分析,FVM空间离散采用NND格式,而结构传热采用有限元法(FEM)进行分析,且在耦合面采用基于控制面的双向映射插值方法进行数据传递。进行了圆管算例分析,2 s时刻驻点处温度计算值与试验值相对误差为4.95%。研究了空天飞行器头锥TPS的热控性能,非耦合方法获得的防热瓦和应变隔离垫(SIP)最高温度分别比耦合结果高114.4 K和32.6 K,这是由于非耦合方法未考虑壁面温度升高对气动热的反馈作用,而耦合方法充分考虑了此影响。采用高热辐射率的涂层、低导热系数和较厚的防热瓦能有效提高热防护系统的隔热性能和降低主动冷却系统的功率和重量,而防热瓦最高温度对其导热系数和厚度不敏感。  相似文献   

19.
双曲梁传感器推力测量技术应用   总被引:7,自引:0,他引:7  
为提高小推力发动机的测量精度,对原测量误差大、测量结果易受环境情况影响的应变梁推力测量装置进行了改进。改进后采用双曲梁推力测量系统。从安装、校准等方面介绍了系统的改进措施及实际应用情况。试验结果表明,双曲梁推力测量系统测量精度高,内阻输出低、抗电干扰性能好。  相似文献   

20.
文章对磁力矩器用4种聚合物材料进行原子氧和真空效应评价试验,利用新型的原子氧环境模拟设备及其他分析手段对试样的质量损失率(SAML)和表面形貌的变化进行了研究。试验结果表明,真空环境会导致材料产生质量损失,4种材料的真空质损最大相差24倍;原子氧作用导致聚合物材料的颜色发生变化,且造成材料的质量损失,4种材料的质量损失率最大相差25倍;原子氧与有机硅物质反应能够形成保护层,可以抑制原子氧对材料内部的进一步侵蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号