首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the source of the solar magnetic cycle is not yet fully understood, it is clear that observed solar variations result primarily from surface manifestations of magnetic field associated active regions. Globally, and at depth in the solar interior, variations of convective efficiency following from magnetic field variations may cause luminosity and diameter changes. The waxing and waning of sunspots and faculae in the photosphere lead to luminosity variations on time scales of days to months, or longer. In the chromosphere magnetically controlled plage leads to a variation of UV flux and line emission such as Ca II H and K. The coronal structure is dominated by background magnetic fields and experiences factor of 2 variations of total mass over the solar cycle. Relative modulation characteristics are remarkably similar from the different atmospheric levels with their unique activity types.  相似文献   

2.
Helioseismic measurements stretching back for about three decades have clearly shown that the acoustic modes are sensitive to solar-cycle changes. 2006 marks the first full 11-year cycle of continuous observations from the Global Oscillation Network Group (GONG), and 10 years of observations with the Michelson Doppler Imager (MDI) aboard the SOHO spacecraft. For the first time, global helioseismology has traced the migrating zonal flow pattern of the torsional oscillation deep within the convection zone, while local helioseismology has revealed the changing pattern of meridional flows over the cycle. The frequencies, lifetimes, and amplitudes of acoustic modes all show variations that closely track the surface distribution of magnetic activity and may provide insight into the excitation and damping of the oscillations. Efforts to trace magnetic field and sound speed or density changes in the solar interior have proved more challenging.  相似文献   

3.
Dynamical and thermal variations of the internal structure of the Sun can affect the energy flow and result in variations in irradiance at the surface. Studying variations in the interior is crucial for understanding the mechanisms of the irradiance variations. “Global” helioseismology based on analysis of normal mode frequencies, has helped to reveal radial and latitudinal variations of the solar structure and dynamics associated with the solar cycle in the deep interior. A new technique, - “local-area” helioseismology or heliotomography, offers additional potentially important diagnostics by providing three-dimensional maps of the sound speed and flows in the upper convection zone. These diagnostics are based on inversion of travel times of acoustic waves which propagate between different points on the solar surface through the interior. The most significant variations in the thermodynamic structure found by this method are associated with sunspots and complexes of solar activity. The inversion results provide evidence for areas of higher sound speed beneath sunspot regions located at depths of 4–20 Mm, which may be due to accumulated heat or magnetic field concentrations. However, the physics of these structures is not yet understood. Heliotomography also provides information about large-scale stable longitudinal structures in the solar interior, which can be used in irradiance models. This new diagnostic tool for solar variability is currently under development. It will require both a substantial theoretical and modeling effort and high-resolution data to develop new capabilities for understanding mechanisms of solar variability.  相似文献   

4.
Our current theoretical and observational understandings of the accretion disks around Galactic black-holes are reviewed. Historically, a simple phenomenological accretion disk model has been used to interpret X-ray observations. Although such a phenomenological interpretation is still useful, high quality X-ray data from contemporary instruments allow us to test more realistic accretion disk models. In a simple and ideal case, the standard optically thick accretion disk model is successful to explain observations, such that the inner disk radius is constant at three times the Schwarzschild radius over large luminosity variations. However, when disk luminosity is close to or exceeds the Eddington luminosity, the standard disk model breaks, and we have to consider the “slim disk” solution in which radial energy advection is dominant. Recent observations of Ultra-luminous X-ray sources (ULXs), which may not be explained by the standard disk model, strongly suggest the slim disk solution. We compare theoretical X-ray spectra from the slim disk with observed X-ray spectra of ULXs. We have found that the slim disk model is successful to explain ULX spectra, in terms of the massive stellar black-holes with several tens of solar mass and the super-Eddington mass accretion rates. In order to explain the large luminosities (>1040 ergs s−1) of ULXs, “intermediate black-holes” (>100M) are not required. Slim disks around massive stellar black-holes of up to several tens of solar mass would naturally explain the observed properties of ULXs.  相似文献   

5.
The generation of solar non-axisymmetric magnetic fields is studied based on a linear α2–Ω dynamo model in a rotating spherical frame. The model consists of a solar-like differential rotation, a magnetic diffusivity varied with depth, and three types of α-effects with different locations, i.e. the tachocline, the whole convective zone and the sub-surface. Some comparisons of the critical α-values of axisymmetric (m = 0) and longitude-dependent modes (m = 1,2,3) are presented to show the roles of the magnetic diffusivity in the problem of modes selection. With the changing of diffusivity intensity for the given solar differential rotation system, the dominant mode possibly changes likewise and the stronger the diffusivity is, the easier the non-axisymmetric modes are excited. The influence of the diffusivity and differential rotation on the configurations of the dominant modes are also presented.  相似文献   

6.
It is well known that the irregularities of the magnetic field are intimately related to the motion of charged particles. Although transport theories need the spatial and time variations of the magnetic field as input, in situ observations are very limited. Ulysses observations have provided a major step forward by entering the unexplored high latitude regions of the heliosphere, the knowledge of which is vital to interpret particle flux measurements, even at the ecliptic. We analyze the magnetic field data of Ulysses during the mission to study the waves and discontinuities in the heliosphere at different locations, covering a total sunspot cycle. Various tools are employed, including power spectral and structure function analysis. A remarkable difference was found between the fluctuations in the fast and slow solar wind. We argue that the latitudinal extent of the high speed solar wind contributes significantly to the latitudinal variation of the transport parameters, which should also affect the 11 (and 22) year modulation cycle.  相似文献   

7.
As a result of the large body of data available from solar and stellar coronae, our understanding of the mechanisms responsible for the heating of coronal plasmas to temperatures of the order of ~ 108 K has changed. The solar corona is highly structured by magnetic fields and the acoustic shocks which, according to early theories, should have acted as the coronal energy source have not been observed. Einstein Observatory data show moreover that coronae are present in most regions of the H-R diagram. The observed relationship between X-ray luminosity and rotational velocity in dwarf stars from spectral types F to M again suggests an active role for the magnetic fields.The basic picture which is emerging is that coronae in stellar types from F to M are produced because of the interaction of the magnetic field with the convective velocity fields generated in the photosphere resulting in MHD waves or currents which dissipate in the corona. X-ray emission in early type stars cannot be explained with this mechanism and the models which have been proposed for these stars are not yet completely satisfactory.  相似文献   

8.
A study on solar coronal activities related to the 11-year activity cycle is presented from the Yohkoh soft X-ray observations. Yohkoh was launched in August 1991, just after the solar maximum of the cycle 22 and continues to observe the Sun in the declining phase of the magnetic activity cycle toward the solar minimum. The soft X-ray flux from the whole Sun in the declining phase essentially decreases with the size of active regions. The X-ray intensity in quiet regions in the declining phase decreases with the magnetic flux observed at the photosphere. The whole-Sun soft X-ray flux does not monotonically decrease, but there are periodic enhancements of the flux with about a one-year interval. The activity appears as bright clusters in the butterfly diagram of the soft X-ray intensity and corresponds to the emergence of complexes of activity in the sunspot zones. The high-latitude activity is also studied, and we find that the X-ray intensity of high-latitude regions fluctuates with time scale of about one year.  相似文献   

9.
Reported heliospheric current-sheet displacements from the equatorial plane have been found to be in agreement with north-south asymmetries of the solar magnetic field. Mean heliospheric sector width estimations in the period 1947–1977 have shown that the heliospheric current sheet demonstrates an asymmetric placement with respect to the solar equator. This asymmetry is very prominent in the epochs of the solar cycle minima while it almost disappears in the epochs of maxima. At the same time, the sums of the maxima values of the sunspot magnetic field intensity showed in the epochs of minimum a characteristic asymmetry which implies an essential conjunction among the heliospheric current sheet, the solar cycle and the solar magnetic field. The main conclusion which could be derived of these observations is that the heliospheric current sheet has its origin on the solar surface while its location with respect to the solar equator appears to be affected by the variability of the lower layers of the solar interior.  相似文献   

10.
The SOHO/MDI data provide the uniform time series of the synoptic magnetic maps which cover the period of the cycle 23 and the beginning of the cycle 24. It is very interesting period because of the long and deep solar minimum between the cycles 23 and 24. Synoptic structure of the solar magnetic field shows variability during solar cycles. It is known that the magnetic activity contributes to the solar irradiance. The axisymmetrical distribution of the magnetic flux (Fig. 3c) is closely associated with the ‘butterfly’ diagram in the EUV emission (Benevolenskaya et al., 2001). And, also, the magnetic field (B) shows the non-uniform distributions of the solar activity with longitude, so-called ‘active zones’, and ‘coronal holes’ in the mid-latitude. Polar coronal holes are forming after the solar maxima and they persist during the solar minima. SOHO/EIT data in the emission of Fe XII (195 Å) could be a proxy for the coronal holes tracking. The active longitudinal zones or active longitude exist due to the reappearance of the activity and it is clearly seen in the synoptic structure of the solar cycle. On the descending branch of the solar cycle 23 active zones are less pronounced comparing with previous cycles 20, 21 and 22. Moreover, the weak polar magnetic field precedes the long and deep solar minimum. In this paper we have discussed the development of solar cycles 23 and 24 in details.  相似文献   

11.
提出了一种离散二维三分量理想磁流体力学守恒型方程组(MHD)的算法(NNDMHD),它有效地控制了磁场散度不为零误差对动量方程组的影响,把气体动力学中计算跨音速流动问题的有效算法——无振荡、无自由参数(NND)格式推广应用到MHD方程组中。利用该算法首先对常见一维和二维算例进行数值试验,得到比较好的结果,消除了间断处的非物理振荡。然后对太阳风在子午面轴对称盔形磁场位形中流动进行数值试验,在这个算例中,物理量沿径向变化大,NNDMHD格式仍然能够有效地控制磁场散度离散不为零误差导致的非物理流动。这个算例的计算结果表明:在网格划分比通常情况和稀4倍时,该算法仍保持很好的计算稳定性。  相似文献   

12.
The contribution to total solar irradiance variations by the magnetic field at the solar surface is estimated. Detailed models of the irradiance changes on the basis of magnetograms show that magnetic features at the solar surface account for over 90% of the irradiance variations on a solar rotation time scale and at least 70% on a solar cycle time scale. If the correction to the VIRGO record proposed by Fröhlich & Finsterle (2001) is accepted, then magnetic features at the solar surface are responsible for over 90% of the solar cycle irradiance variations as well.  相似文献   

13.
本文旨在介绍一项具有重大科学意义和应用价值的深空探测任务构想.该任务将对驱动恒星大尺度爆发过程的中心结构(即磁重联电流片)进行抵近(原位)探测,主要目的是详细研究发生在离地球最近的恒星—太阳上的大尺度磁重联过程的精细物理特征,揭示太阳系中最为剧烈的能量释放过程(即太阳爆发或太阳风暴)的奥秘.该任务的科学目标:磁重联过程...  相似文献   

14.
CMEs are due to physical phenomena that drive both, eruptions and flares in active regions. Eruptions/CMEs must be driven from initially force-free current-carrying magnetic field. Twisted flux ropes, sigmoids, current lanes and pattern in photospheric current maps show a clear evidence of currents parallel to the magnetic field. Eruptions occur starting from equilibria which have reached some instability threshold. Revisiting several data sets of CME observations we identified different mechanisms leading to this unstable state from a force free field. Boundary motions related to magnetic flux emergence and shearing favor the increase of coronal currents leading to the large flares of November 2003. On the other hand, we demonstrated by numerical simulations that magnetic flux emergence is not a sufficient condition for eruptions. Filament eruptions are interpreted either by a torus instability for an event occurring during the minimum of solar activity either by the diffusion of the magnetic flux reducing the tension of the restraining arcade. We concluded that CME models (tether cutting, break out, loss of equilibrium models) are based on these basic mechanisms for the onset of CMEs.  相似文献   

15.
本文应用十八、十九周下降期的地磁观测资料导出了对应时期太阳风速度的卡林顿经度变化,并结合由极盖区地磁观测导出的行星际磁扇形结构确定十八、十九周下降期太阳南北磁极极性、类偶极点的太阳余纬和卡林顿经度,从而确定了该时期的冕洞分布,并与二十周冕洞分布进行比较.   相似文献   

16.
Indices of photospheric activity as reconstructed sunspot blocking (essentially sunspot areas) are compared with the White and Livingston 1Å Ca II K index and a polarization-brightness index of the corona that is proportional to mean hemispheric coronal electron density. The photospheric, chromospheric and coronal manifestations of magnetic activity associated with the solar cycle show quite similar behavior. The modulation properties of each index are remarkably similar both in terms of cycle signal-to-noise and the morphology of scatter variations with respect to cycle phase. The coronal electron density shows a more rapid rise from solar minimum to maximum than the activity indicators from lower atmospheric levels — suggesting a difference in growth rates for the large scale structures influencing the corona with respect to the smaller scale photospheric features.  相似文献   

17.
The recent detection of radio loud quasars with a large high energy γ-ray luminosity is discussed, in the framework of non-thermal synchrotron self Compton models. These observations are strong evidence of relativistic beaming of the radiation, due to the absence of strong photon-photon opacity. If γ-rays are self Compton emission, these sources can be the first observed example of a Compton catastrophe, resulting from the dominance of the radiation over the magnetic energy density. Inhomogeneous and relativistic jet models can in this case explain the observed spectrum from the far infrared to the γ-rays. If, on the other hand, the magnetic energy density is dominant, then the γ-rays must be due to direct synchrotron emission, implying very large particle energies. Pure synchrotron models which take into account electron-positron pair production are then discussed. Multifrequency simultaneous observations are a powerful test of the models.  相似文献   

18.
本文比较第17—21太阳周黑子数、地磁A_p指数、各周极大年≥2级耀斑数、磁暴数及第一、二、三大磁暴情况;分析了≥2级耀斑数及磁暴的分布。21周3级耀斑对应磁暴比例低于19、20周,Ⅳ型及米波射电爆发是产生磁暴的重要条件。进一步分析了21周最大磁暴、最大射电爆发引起的磁暴,最严重的电离层短波通讯干扰及有明亮物质抛射的大耀斑、双带大耀斑引起的磁暴等典型例子。最后对SMY期间22个无黑子耀斑作了分析,它们可能引起中小幅度的磁暴。   相似文献   

19.
Cosmic ray modulation in the outer heliosphere is discussed from a modeling perspective. Emphasis is on the transport and acceleration of these particles at and beyond the solar wind termination shock in the inner heliosheath region and how this changes over a solar cycle. We will show that by using numerical models, and by comparing results to spacecraft observations, much can be learned about the dependence of cosmic ray modulation on solar cycle changes in the solar wind and heliospheric magnetic field. While the first determines the heliospheric geometry and shock structure, the latter results in a time-dependence of the transport coefficients. Depending on energy, both these effects contribute to cosmic ray intensities in the inner heliosheath changing over a solar cycle.  相似文献   

20.
The high-speed plasma streams in the solar wind are investigated during the solar cycles nos. 20–22 (1964–1996), separately on the two types of streams according to their solar origin: the HSPS produced by coronal holes (co-rotating) and the flare-generated, in keeping with the classification made in different catalogues. The analysis is performed taking into account the following high-speed stream parameters: the durations (in days), the maximum velocities, the velocity gradients and, the importance of the streams. The time variation of these parameters and the high-speed plasma streams occurrence rate show an 11-year periodicity with some differences between the solar cycles considered. A detailed analysis of the high-speed stream 11-year cycles is made by comparison with the “standard” cycles of the sunspot relative number (Wolf number). The different behaviour of the high-speed stream parameters between even and odd solar cycles could be due to the 22-year solar magnetic cycle. The increased activity of the high-speed plasma streams on the descendant phases of the cycles, regardless of their solar sources, proves the existence of some special local conditions of the solar plasma and the magnetic field on a large scale that allow the ejection of the high energy plasma streams. This fact has led us to the analysis the stream parameters during the different phases of the solar cycles (minimum, ascendant, maximum and, descendant) as well as during the polar magnetic field reversal intervals. The differences between the phases considered are pointed out. The solar cycles 20 and 22 reveal very similar dynamics of the flare-generated and also co-rotating stream parameters during the maximum, descendant and reversal intervals. This fact could be due to their position in a Hale Cycle (the first component of the 22-year solar magnetic cycle). The 21st solar cycle dominance of all co-rotating stream parameters against the 20th and 22nd solar cycle ones, during almost all phases, could be due to the same structure of a Hale Cycle – solar cycle 21 is the second component in a 22-year SC. During the reversal intervals, all high-speed stream parameters have comparable values with the ones of the maximum phases of the cycles even if this interval contains a small part of the descendant branch (solar cycles 20 and 22).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号