首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We continue monitoring supernova remnant (SNR) 1987A with the Chandra X-ray Observatory. As of 2004 January, bright X-ray spots in the northwest and the southwest are now evident in addition to the bright eastern ring. The overall X-ray spectrum, since 2002 December, can be described by a planar shock with an electron temperature of ∼2.1 keV. The soft X-ray flux is now 8 × 10−13 ergs cm−2 s−1, which is about five times higher than four years ago. This flux increase rate is consistent with our prediction based on an exponential density distribution along the radius of the SNR between the HII region and the inner ring. We still have no direct evidence of a central point source, and place an upper limit of LX = 1.3 × 1034 ergs s−1 on the 3–10 keV band X-ray luminosity.  相似文献   

2.
985 whistlers observed between 1970 and 1975 in Hungary have been processed for equatorial plasmaspheric electron density and tube electron content above 1000 km (NT). The hourly median value of NT exhibits a diurnal variation with an amplitude of 1×1013 electrons/cm2-tube. 75 per cent of the electron flux values obtained from the time variation of NT are lower than 6×108 el cm?2s?1, while in some cases the fluxes reach a value as high as 3×109 el cm?2s?1. Between 17 and 04 LT the dominant flux direction is toward the ionosphere. The data also indicate that the day to day filling of the plasmasphere after magnetic disturbances continues through several days without exhibiting saturation, with higher filling rates for lower values of average Kp.  相似文献   

3.
The Solar Maximum Mission γ-ray spectrometer (GRS) has detected an intense γ-ray burst that occurred on 1984 August 5. The burst originated from a source in the constellation Hydra and lasted about 45 s. Its integral fluence
20 keV was 3 × 10−3 erg cm−2. Spectral evolution similar to other bursts detected by SMM was observed. The overall shape of the spectrum from 20 keV to 100 MeV, on timescales as short as 2 s, is relatively constant. This shape can be fitted by the sum of an exponential-type function and a power law. The spectral shape of this event may be characteristic of many γ-ray bursts. There is no evidence for narrow or broadened emission lines.  相似文献   

4.
In this review I discuss the various γ-ray emission lines that can be expected and, in some cases have been observed, from radioactive explosive nucleosynthesis products. The most important γ-ray lines result from the decay chains of 56Ni, 57Ni, and 44Ti. 56Ni is the prime explosive nucleosynthesis product of Type Ia supernovae, and its decay determines to a large extent the Type Ia light curves. 56Ni is also a product of core-collapse supernovae, and in fact, γ-ray line emission from its daughter product, 56Co, has been detected from SN1987A by several instruments. The early occurrence of this emission was surprising and indicates that some fraction of 56Ni, which is synthesized in the innermost supernova layers, must have mixed with the outermost supernova ejecta.Special attention is given to the γ-ray line emission of the decay chain of 44Ti (44Ti  44Sc  44Ca), which is accompanied by line emission at 68, 78, and 1157 keV. As the decay time of 44Ti is ∼86 yr, one expects this line emission from young supernova remnants. Although the 44Ti yield (typically 10−5–10−4M) is not very high, its production is very sensitive to the energetics and asymmetries of the supernova explosion, and to the mass cut, which defines the mass of the stellar remnant. This makes 44Ti an ideal tool to study the inner layers of the supernova explosion. This is of particular interest in light of observational evidence for asymmetric supernova explosions.The γ-ray line emission from 44Ti has so far only been detected from the supernova remnant Cas A. I discuss these detections, which were made by COMPTEL (the 1157 keV line) and BeppoSAX (the 68 and 78 keV lines), which, combined, give a flux of (2.6 ± 0.4 ± 0.5) × 10−5 ph cm−2 s−1 per line, suggesting a 44Ti yield of (1.5 ± 1.0) × 10−4M. Moreover, I present some preliminary results of Cas A observations by INTEGRAL, which so far has yielded a 3σ detection of the 68 keV line with the ISGRI instrument with a flux that is consistent with the BeppoSAX detections. Future observations by INTEGRAL-ISGRI will be able to constrain the continuum flux above 90 keV, as the uncertainty about the continuum shape, is the main source of systematic error for the 68 and 78 keV line flux measurements. Moreover, with the INTEGRAL-SPI instrument it will be possible to measure or constrain the line broadening of the 1157 keV line. A preliminary analysis of the available data indicates that narrow line emission (i.e., Δv < 1000 km s−1) can be almost excluded at the 2σ level, for an assumed line flux of 1.9 × 10−5 ph cm−2 s−1.  相似文献   

5.
We investigated the physical properties of molecular gas in the nuclear region of M51 (Seyfert 2). We obtained an aperture synthesis 13CO(J = 1 − 0) image using the Nobeyama Millimeter Array (NMA), and compared it with NMA 12CO(J = 1 − 0) and HCN(J = 1 − 0) maps at similar spatial resolutions. Within a radius of 180 pc from the center, the 13CO(1 − 0) integrated intensity was found to be 3 times weaker than that of HCN(1 − 0). Large-Velocity-Gradient (LVG) calculations suggest that the observed high HCN(1 − 0)/13CO(1 − 0) intensity ratio would arise from dense (nH2 ∼ 105 cm−3) and hot (Tkin ≳ 300 K) molecular clouds in the nuclear molecular disk. We also observed in the 12CO(1 − 0), (3 − 2), 13CO(1 − 0), and (3 − 2) lines using the Nobeyama 45m and JCMT 15m telescopes. We detected weak 13CO lines as well as strong 12CO lines. The LVG calculations assuming a two-component model suggest that there is a large amount of low-density (nH2 ∼ 3 − 6 × 102 cm−3), low-temperature (Tkin ∼ 20 – 50 K) gas, and a small amount of high-density (nH2 ≳ 104 cm−3), high-temperature (Tkin ≳ 500 K) gas. The existence of the high-density and high-temperature component, although having a quite small beam filling factor, supports the aperture synthesis observation results mentioned above. Since this dense, hot gas is located in the nuclear molecular disk around the Active Galactic Nucleus (AGN), it may be heated by the strong X-ray radiation and/or by the shock induced by the radio jet.  相似文献   

6.
The transport of ions from the polar ionosphere to the inner magnetosphere during stormtime conditions has been computed using a Monte Carlo diffusion code. The effect of the electrostatic turbulence assumed to be present during the substorm expansion phase was simulated by a process that accelerated the ions stochastically perpendicular to the magnetic field with a diffusion coefficient proportional to the energization rate of the ions by the induced electric field. This diffusion process was continued as the ions were convected from the plasma sheet boundary layer to the double-spiral injection boundary. Inward of the injection boundary, the ions were convected adiabatically. By using as input an O+ flux of 2.8 × 108 cm?2 s?1 (w > 10 eV) and an H+ flux of 5.5 × 108 cm?2 s?1 (w > .63 eV), the computed distribution functions of the ions in the ring current were found to be in good agreement, over a wide range in L (4 to 8), with measurements made with the ISEE-1 satellite during a storm. This O+ flux and a large part of the H+ flux are consistent with the DE satellite measurements of the polar ionospheric outflow during disturbed times.  相似文献   

7.
Data are presented on the zones of energetic particle precipitation at middle and low latitudes observed during and after magnetic storm injection events. Satellite measurements of the equatorial zone ion flux (~ 103 - 104 cm?2 s?1 sr?1 for E > 45 keV at 240 km) are consistent with the development of a temporary low altitude ion radiation belt at the magnetic equator. In the midlatitude ion zone the flux (~ 103 - 105 ions cm?2 s?1 sr?1 for E > 45 keV at 220 km) is directly related to magnetic activity while the midlatitude electron zone flux has a delayed response (~ 4 days).  相似文献   

8.
Far-infrared observations of the Galactic Center have been carried through with the MPE Im balloon-borne telescope “Golden Dragon”. The measurements are composed of photometric scanning (33–95 μm) of the inner 4′×4′ and low resolution spectroscopy (δν = 10 cm?1) of the center and of a position approximately 1.5′ to the north. A Mars spectrum has been obtained for calibration. The spatial resolution of the photometry map is increased using the Maximum Entropy Method and the resulting map is compared to other observations in the same and other spectral regions. A clear asymmetry in the ring-like structure around the center indicates the presence of noncircular motions. The shape of the spectra is fairly smooth with at least no prominent dust features. A simple modelling shows a drastic increase of column density within 2 pc from the center and a modest drop over the next 3 pc to the north.  相似文献   

9.
The GRASP Mission - Gamma Ray Astronomy with Spectroscopy and Positioning - will be the first high resolution spectral imager to operate in the gamma-ray region of the spectrum. The instrument covers the photon energy range from approximately 15 keV to more than 100 MeV. A combination of discrete germanium solid state devices and scintillation counters form a position sensitive gamma-ray detection matrix which is operated in conjunction with a coded aperture mask to create arc minute images of the gamma-ray sky with a spectral resolution of typically λ/Δλ ∼1000. The use of a coded mask with a ‘zoom’ facility will permit the combination of field of view and angular resolution to be adjusted to suit the scientific aims of each observation. The respective continuum and line sensitivities will be typically 10−8ph cm−2 s−1 keV−1 and 3 10−6 cm−2 s−1 for point sources of gamma-rays with photon energies close to 1 MeV.  相似文献   

10.
We describe the fabrication and flight performance of a balloon-borne large area hard X-ray (20–100 keV) telescope for spectral studies of discrete cosmic X-ray sources. The telescope consists of two multi-wire Xenon filled proportional counters of effective area 1200 cm2 each, mounted on an orientable platform. It can be pre-programmed to track any celestial source with a pointing accuracy of 0.5 degrees. For one hour of observation the telescope has a 5 σ detection sensitivity of 10−5 ph cm−2 s−1. The laboratory test results and the performance in a series of balloon flights conducted in 1984–1986 period is discussed and the preliminary results obtained for some X-ray sources are presented.  相似文献   

11.
It is shown that one can understand the basic properties of the quiet distant Earth's / and Jupiter's magnetotails as seen in the ISEE-3 / and Voyager-2 data (at distances ∼ 200 RE / and ∼ 6 000 RJ correspondingly behind the planets) within a simple hydromagnetic model with a partially “open” boundary. The degree of openness required to explain the lobe densities (≳ 10−1 / ≳ 10−2 cm−3) is ∼ 10−1 in both cases. This gives the average lobe magnetic field intensities: 8–9 / 0–0.5 nT. The tail flaring rate decreases at ∼ 100 RE / ∼ 1 000 RJ, and for larger distances non-circular tails are obtained with the average diameters ∼ 60 RE / ∼ 600 RJ, in agreement with the data. The degree of flattening (east-west to north-south ratio) is 1.2–2.3 / 4–10 depending on the pressure anisotropy in the solar wind. The expected lengths of the magnetic tails of Mercury, Saturh, Uranus are: 10–50 RM, (1–7)×103 RS, (1–6) × 103 RU, in corresponding planetary radii.  相似文献   

12.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

13.
Observations of interstellar gas in front of stars near the Sun are briefly reviewed to obtain for the properties of the local fluff: n−0.1 cm−3, ne 0.003 cm−3, T−11, 500 °K, and B−3−5 μG. The velocity vector obtained from He° λ584 backscattered data (V, 1, b) = (−25 km s−1, 3°, +17°) appears to adequately describe the heliocentric upwind velocity vector for the local fluff.  相似文献   

14.
A large area (400 cm2) low background X-ray telescope consisting of four collimated NaI/CsI scintillator phoswich detectors (each 100 cm2) was built and successfully flown several times during 1980–1984. The phoswich configuration enables one to eliminate X-ray background produced by high energy atmospheric and cosmic gamma-rays. Combined with large area, small field of view (5° × 5°) and large exposure time that was possible due to an on-board telescope pointing programmer, for the 20 – 120 Kev energy range, 3σ sensitivity achieved was 5 × 10−6 photon/cm2 sec Kev for exposure time of 104 sec at observational altitude of 4 g/cm2. The Instrument characteristics, relevant details on pointing system, detector system, associated electronics and telemetry and in-flight performance in 1983 and 1984 are presented.  相似文献   

15.
X-ray observations indicate that the Galactic black hole Sgr A is inactive now, however, we suggest that Sgr A can become active when a captured star is tidally disrupted and matter is accreted into the black hole. Consequently the Galactic black hole could be a powerful source of relativistic protons with a characteristic energy ∼1052 erg per capture. The diffuse GeV and TeV γ-rays emitted in the direction of the Galactic Center (GC) are the direct consequences of p–p collisions of such relativistic protons ejected by very recent capture events occurred ?105 yr ago. On the other hand, the extended electron-positron annihilation line emission observed from GC is a phenomenon related to a large population of thermalized positrons, which are produced, cooled down and accumulated through hundreds of past capture events during a period of ∼107 yr. In addition to explaining GeV, TeV and 511 keV annihilation emissions we also estimate the photon flux of several MeV resulting from in-flight annihilation process.  相似文献   

16.
Time dependent numerical simulation of relativistic wind interaction with interstellar medium was performed. The winds are ejected from magnetosphere of rotation powered pulsars. The particle flux in the winds is assumed to be isotropic. The energy flux is taken as strongly anisotropic in accordance with prediction of the MHD theory of the relativistic winds. The modeling has been performed for the wind magnetization in the range 3 × 10−3–10−1. The numerical solutions reproduce the most spectacular features observed in the central part of plerions: toroidal structure and jet-like features. Increase of the wind’s magnetization results in decrease of the size of the synchrotron nebula.  相似文献   

17.
We analyse the possibility that the shock termination of the solar wind should occur at a heliocentric distance of 50 a.u. It is concluded that this is possible if the density of the interstellar medium near the Sun is of the order of 0.5 cm−3, or the pressure of low energy cosmic rays (less than about 300 MeV/nucleon) is of the order of 6×10−12 dyn cm−2, or the interstellar magnetic field strength is of the order of 8 microgauss, or some suitable combination of these. Such conditions would not normally be expected to prevail in the interstellar medium in the neighbourhood of the Sun. However, the possibility that a supernova explosion occurred nearby some 105–106 years ago must be taken seriously and in such circumstances the required conditions may be relatively easily achieved.  相似文献   

18.
We present observations of flaring active regions with the Very Large Array (V.L.A. at 6 cm and 20 cm wavelengths) and the Westerbork Synthesis Radio Telescope (W.S.R.T. at 6 cm wavelength). These are compared with photospheric magnetograms (Meudon) and with Hα and offband Hα photographs (Big Bear and Ottawa River Solar Observatories). The 6 cm radiation of these active regions marks the legs of dipolar loops which have their footpoints in lower-lying sunspots. The intense, million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength H? = 600 Gauss and the height above the sunspot umbrae h = 3.5±0.5 × 109 cm. Circularly polarized horseshoe structures at 6 cm ring the sunspot umbrae. The high degree of circular polarization (?c = 95%) of the horseshoes is attributed to gyroresonant emission above sunspot? penumbrae. The 20 cm radiation of these active regions exhibits looplike coronal structures which extend across regions of opposite magnetic polarity in the underlying photosphere. The 20 cm loops are the radio wavelength counterparts of the X-ray coronal loops. We infer semilengths L = 5 × 109 cm, maximum electron temperatures Te(max) = 3 × 106 K, emission measures ∫Ne2dl = 1028 cm?5, and electron densities Ne = 109 cm?3 (or pressures p = 1 dyn cm?2) for the 20 cm bremsstrahlung. A total of eight solar bursts were observed at 6 cm or 20 cm wavelength with second-of-arc angular resolution. The regions of burst energy were all resolved with angular sizes between 5″ and 30″, brightness temperatures between 2 × 107 K and 2 × 108 K, and degrees of circular polarization between 10% and 90%. The impulsive phase of the radio bursts are located near the magnetic neutral lines of the active regions, and between the flaring Hα kernels which mark the footpoints of magnetic loops. In one case there was preburst heating in the coronal loop in which a burst occurred. Snapshot maps at 10 s intervals reveal interesting burst evolution including rapid changes of circular polarization and an impulsive burst which was physically separated from both the preburst radio emission and the gradual decay phase of the burst.  相似文献   

19.
A large (1455 cm2) hard X-ray telescope was successfully launched aboard a stratospheric balloon on October 4, 1980. During this flight four galactic X-ray sources were observed, namely the transient recurrent X-ray pulsar A0535+26, the Crab Nebula, Cygnus X-1 and X Persei. Here we report the results on the latter two sources. From Cygnus X-1 we measured a photon flux in the band 30 to 200 keV, of 3.5 × 10?2 photons cm?2 which is 6.5 times lower than that recieved from the source in a “low” intensity state in the same energy band. In addition, the photon spectrum in the same energy band was very soft and consistent with a power law with photon index α = 2.71 ± 0.14. Even if a simultaneous observation of the source at lower energies was not available, our data strongly suggest that we observed the source during a “high” intensity state. We report also positive detection in the band 30 to 200 keV of the low luminosity X-ray pulsar X Persei. In its spectrum we confirm the presence of a hard X-ray tail consistent with a power law (photon index α = 2.17 ± 0.42).  相似文献   

20.
Preliminary results are reported for gamma ray observations of the galactic center region made during a 15 hour balloon flight from Alice Springs, Australia on April 18, 1979. The observations were carried out with the UCR double-scatter gamma-ray telescope at energies of 1 to 30 MeV. The observations are compatible with a galactic source of approximately equal brightness along the region 300°<ℓII<60°. The energy distribution joins smoothly to previous spark chamber results at energies above 30 MeV and to scintillator results below 1 MeV. It appears to be a combination of nuclear gamma ray lines superimposed on a bremsstrahlung spectrum with a power law (1.3±.7) × 10−3 E(1.7±.2). The 12C* line at 4.4 MeV appears to be present with a significance of about 16σ. The flux in the line is (6±3) × 10−4photons cm−2s−1rad−1. The oxygen line at 6.1 MeV does not seem to appear significantly above background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号