首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stimulated plasma wave experiment (SPW) has been successfully carried out in the plasmasphere and the magnetosphere along the JIKIKEN (EXOS-B) satellite orbit where the plasma parameters indicate wide variety of the combination of the electron number density, ranging from 1/cc to 104/cc, and the electron cyclotron frequency, ranging from 6 kHz to 200 kHz.The upper hybrid resonances FUHR usually persists for long periods up to 125 msec and the electron cyclotron resonances nFH are stimulated at frequencies with the very high harmonic number n; sometimes, the nFH resonance takes place for n=47.All the features of the resonances including FOn reflect the characteristics of the magnetospheric plasma that contains the energetic and non-Maxwellian components of the particles. The measurement of the plasma resonance contributes to the detection of the local electron density and the magnetic field intensity. The mode of the propagating radio waves is also determined being compared with the observed local plasma resonance frequency Fp.  相似文献   

2.
在发射调制电子束的主动空间试验中,电子束与背景等离子体的线性和非线性相互作用将产生哨声波辐射.影响辐射特性的因素很多,调制电子束的弛豫长度是其中一个重要因素.本文研究了呈指数衰减的调制电子束弛豫长度对电子束产生的哨声波辐射特性的影响.结果表明,当电子束弛豫长度与背景等离子体非均匀特征尺度相当时,有利于提高调制电子束产生的波辐射强度.   相似文献   

3.
Based on the dispersion relation of electron plasma, one can expect, that the waves excited in the frequency band (fp, fu=sqrt(fp*fp+fc*fc)) should persist in experimental spectra. For wave data from a spacecraft immersed in a cold plasma such an assumption may be misleading. In measurements performed on board the INTERCOSMOS-19, ACTIVE, APEX satellites and VC36.064CE rocket the most prominent spectral structure is centered around frequency fr fulfilling the relation fcrp and corresponds to resonant detection of Bernstein waves excited in the surrounding plasma by spacecraft systems. Input network mismatch at frequencies around fu significantly depresses natural plasma noise as well as that excited by the spacecraft. Plasma emissions in the band (fp, fu) are prominent if the electromagnetic excitation is preferential (topside sounders) or if the excitation introduces nonequilibrium components into the plasma e.g. particle beams or clouds. Experimental examples are presented and parameters of cold plasma spectra useful for electron density estimation are discussed. The application to other spacecraft-cold plasma configurations is suggested.  相似文献   

4.
Beam-plasma interaction effects are studied during the active space experiment with electron and Xe-ion beam injections in an ionospheric plasma. Permanent 40-kHz-modulated electron beam injection occurs simultaneously with a xenon-ion beam injected by the Hall-type plasma thruster operating in a square-pulse mode (100/50 s for a job/pause duration). The unusual behavior of the background charged particle fluxes and wave activity stimulated during the beam-plasma interaction have been registered by the scientific instruments onboard Intercosmos-25 station (IK-25) and Magion-3 subsatellite. The longitudinal and electromagnetic wave instabilities and their mutual relationship are considered in order to explain the observed effects. The excitation of electrostatic waves by the electron injection has been considered for different resonance conditions near the linear stability boundary. Beam-driven electromagnetic instability is responsible for the backward-propagating whistler waves excited via cyclotron resonance. Competition of these two beam instabilities is one of the subjects of the present study.  相似文献   

5.
在主动束-等离子体试验中,调制电子束从空间飞行器入射进电离层等离子体将会产生电磁波辐射,在不同试验条件下电磁波辐射机理也不一样,由电子束纵向约束性产生电磁波辐射是其中之一.对半无界稀薄调制电子束从空间飞行器入射进电离层等离子体时所产生的波现象进行了理论分析和数值计算.结果表明,当调制电子束沿磁力线入射时,会在电离层等离子体中产生高频电磁波辐射,该辐射主要集中在垂直于入射电子束运动方向的平面内.   相似文献   

6.
Electron beam experiments in space that have been done and planned in Japan are reviewed. 200eV, 1mA electron beam is emitted from a satellite and several types of wave excitation such as UHF and ωce have been observed. The satellite potential and the energy spectrum of returning electrons are measured by Langmuir probes and electrostatic energy analyser. In rocket experiments of K-10-11, K-10-12, K-9M-57, K-9M-58, K-9M-61 and K-9M-66, several types of electron guns were used whose power ranges from 1mW to 1KW. The rocket potential was measured by Langmuir probes and floating probes and optical line emission measurement and wave measurements were also done. The rocket potential was not so high as expected from the balance with ionospheric plasma but strongly affected by the plasma production by the emitted electron beam and return electrons.  相似文献   

7.
The four identical Cluster spacecraft, launched in 2000, orbit the Earth in a tetrahedral configuration and on a highly eccentric polar orbit (4–19.6 RE). This allows the crossing of critical layers that develop as a result of the interaction between the solar wind and the Earth’s magnetosphere. Since 2004 the Chinese Double Star TC-1 and TC-2 spacecraft, whose payload comprise also backup models of instruments developed by European scientists for Cluster, provided two additional points of measurement, on a larger scale: the Cluster and Double Star orbits are such that the spacecraft are almost in the same meridian, allowing conjugate studies. The Cluster and Double Star observations during the 2005 and 2006 extreme solar events are presented, showing uncommon plasma parameters values in the near-Earth solar wind and in the magnetosheath. These include solar wind velocities up to ∼900 km s−1 during an ICME shock arrival, accompanied by a sudden increase in the density by a factor of ∼5 and followed by an enrichment in He++ in the secondary front of the ICME. In the magnetosheath ion density values as high as 130 cm−3 were observed, and the plasma flow velocity there reached values even higher than the typical solar wind velocity. These resulted in unusual dayside magnetosphere compression, detection of penetrating high-energy particles in the magnetotail, and ring current development following several successive injections of energetic particles in the inner magnetosphere, which “washed out” the previously formed nose-like ion structures.  相似文献   

8.
We reported the results of our investigations of wave activity in high-frequency range performed on board CLUSTER spacecraft in the middle-altitude cusp region, around 5 RE during August and September 2002. Our analysis was mainly based on the registration gathered by the WHISPER instrument (Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation). For a better understanding of the processes of wave-particle interaction and in order to understand the general plasma conditions in the cusp region, we also included in our analysis the data registered by the STAFF (Spatio-Temporal Analysis of Field Fluctuation experiment) instrument and the CIS (Ion Spectrometry experiment) instrument. These observations were carried out during different geomagnetic activity; under quiet conditions and during magnetic storm period. The space plasma is characterised by the ratio of plasma frequency to electron gyrofrequency, in this case, the local plasma frequency was, mainly, a little greater than the electron plasma, but it was also frequently observed that these two characteristic frequencies were not very different from one another. The whistler waves, electron-cyclotron waves, electron-acoustic waves and Langmuir waves have been detected when the spacecraft was crossing the middle-altitude cusp region. We suggested that the majority of those waves were generated by electron beams. For a better understanding the plasma conditions in the low and middle-altitude cusp region the past FREJA wave data results are used to describe typical wave activity detected in the low-altitude cusp region. The aim of this paper is to discuss, on the basis of a few chosen representative examples, the property of typical high wave activity detected in the lower part of cusp region.  相似文献   

9.
Two different processes play an important role during emission of pulsed electron beam from a satellite: the positive charging of the spacecraft by emitted electron current and the body neutralization by ambient plasma electrons (mainly in pauses between electron pulses).

The injection of modulated electron beam (pulses of 2μs duration, E=8keV, I=0.1A and 25μs repetition) was carried on in the APEX Project. A simple computer model of this process for APEX scenario was performed.

The results show that after primary positive charging (during gun operation) a significant negative charging (in pauses between pulses) caused by neutralization process by ambient plasma with fp>2MHz takes place.  相似文献   


10.
The Moon is immersed in plasma environment. The most interesting challenge of the lunar plasma– field environment is that it is alternatively dominated by the extended but variable outer atmosphere of the Earth – the magnetosphere – and by the extended but highly variable solar atmosphere – the solar wind. Understanding the plasma environment and its interaction with the lunar surface will be beneficial to both manned and robotic surface exploration activities and to scientific investigations. Presented is a preliminary map of variations of lunar surface electric potential over the day side and night side using probe equations and a discussion on dust dynamics in this E-field structure using the data from Electron Reflectometer in Lunar Prospector spacecraft during 1998–1999. On the day side, potential is around 5 V and on the night side it reaches up to −82 V. On the night side region, only highly energetic electrons can overcome this large negative potential. The variation at electron temperature (Te) strongly reflects in the surface potential. The potential reaches to a value of −82 V for Te = 58 eV. Surface charging causes the electrostatic transport of charged dust grains. Dust grain size of 0.1 μm shows a levitation height of 4.92 m on lunar day side, 748 m on terminator region and 3.7 km on the night side. The radius of maximum sized grain to be lofted, Rmax, peaks at the terminator region (Rmax = 0.83 μm). At the transition region dust levitation is almost absent. This region is most suited for exploration activities as the region is free from hazards caused by lunar dust.  相似文献   

11.
The Porcupine sounding rocket consisted of a central instrumented payload with 4 smaller payloads ejected in the radial direction. One of the smaller payloads contained a xenon ion gun which directed a 200eV Xe+ ion beam roughly perpendicular to the magnetic field. During the ion gun exercises a variety of plasma waves were observed by the δn/n experiment on the central spacecraft. For small separations betwen the ion gun and the plasma wave receivers, intense and very narrow band emissions were observed just above harmonics of the hydrogen gyrofrequency extending from n=1 to at least n=11 and perhaps to much higher harmonics. Additional structure at the helium gyrofrequency was also observed and the width of each spectral line was the order of the oxygen gyrofrequency. The fastest growing modes were at n=5 or 6. For larger separations between the ion gun and plasma wave receiver, band limited emissions were observed between the NO+ and O+ lower hybrid frequencies. The intense ion cyclotron harmonic waves observed for short separations are very similar to plasma waves observed at high altitudes in ion conics by the S3-3 satellite. In those examples, natural ion beams, which were nearly perpendicular to the magnetic field, produced plasma waves between harmonics of the hydrogen gyrofrequency and the most intense waves occurred between n=3 and n=7. Hence the ion beam experiment is directly applicable to understanding ion beams within the magnetosphere.  相似文献   

12.
The paper is based on the electron and ion energy spectra measurement on board the main spacecraft of the APEX mission. During the active phase of the experiment an intense electron beam was emitted from the main satellite. The basic cycle of the electron injection is formed by current pulses of different frequencies, duration and intensity. The spacecraft potential changes due to the gun operation were compensated by a low energy Xe plasma generator. The data show that the response of the environment to the beam emission depends not only on injection parameters but on the spacecraft position and orientation with respect to the magnetic field as well. The typical response is an increase of the intensity of the low energy (less than 1 keV) electrons in all directions. In addition, strong field aligned fluxes of electrons and/or ions are observed with energies below the gun energy. An attempt to classify different types of response and to find possible mechanisms which can explain the observed phenomena is made in the present paper.  相似文献   

13.
While interplanetary dust constitutes a primary source of cosmic particulate matter in planetary magnetospheres, the debris produced by its impact with small satellites and ring material provides an important secondary source. Internal processes, such as volcanic activity, particularly in the smaller satellites, could result in a third source. In the case of the terrestrial magnetosphere there are also artificial (internal) sources: 1–10μ sized A?2O3 particles injected by solid rocket mortar burns between near earth and geosynchronous orbit constitute one such source, while the fragments of larger bodies (artificial satellites) due to explosions (e.g., “killer satellites”) and collisions constitute another. Finally, if we include the purely induced cometary magnetosphere among planetary magnetospheres, the injection of cometary dust into it due to entrainment by the outflowing gases constitutes another source.As a result of being immersed in a radiative and plasma environment these dust grains get electrically charged up to some potential (positive or negative). Particularly in those regions where the magnetospheric plasma is hot and dense and their own spatial density is low, the dust grains could get charged to numerically large negative potentials.While this charging may have physical consequences for the larger grains, such as electrostatic erosion (“chipping”) and disruption, it also can effect the dynamics of the smaller grains. Indeed, the small but finite capacitance of these grains, which leads to a phase lag in the gyrophase oscillation of the grain potential, could even lead to the permanent magneto-gravitational capture of interplanetary grains within planetary magnetospheres in certain situations. Here we will review the sources of dust in planetary magnetospheres and discuss their physics and their dynamics under the combined action of both planetary gravitational and magnetospheric electromagnetic forces.  相似文献   

14.
Relaxation sounders proved to work very well in dilute plasmas far from the Earth. They provide a very powerful diagnostic tool. In the solar wind and magnetosheath, they give a sure and precise measurement of the electron density. In the magnetosphere, where detailed measurements on the fQ resonances are possible, they provide, in addition, a determination of the electron temperature and drift velocity. Moreover, the possibility of oblique echoes in this region gives the perspective of obtaining even more information on the medium by detailed interpretation of the signals.  相似文献   

15.
In the Apex project the modulated electron beam (pulses of 2 micro sec duration, E=8 keV, I=0.1 A and 25 micro sec repetition) was emitted from a main satellite. The RF emissions were observed in parallel on the mother satellite as well as on Magion-3 subsatellite. The paper discusses the case when the subsatellite was separated about 200 km from the main object and the electron gun was operated. Together with strong electrostatic emission at the upper hybrid plasma frequency on the main spacecraft, selected spikes in RF frequency range on Magion-3, were simultaneously detected, which can be related to pulse electron beam emission.  相似文献   

16.
Broadband electrostatic noise (BEN) is commonly observed in different regions of the Earth’s magnetosphere, eg., auroral region, plasma sheet boundary layer, etc. The frequency of these BENs lies in the range from lower hybrid to the local electron plasma frequency and sometimes even higher. Spacecraft observations suggest that the high and low-frequency parts of BEN appear to be two different wave modes. There is a well established theory for the high-frequency part which can be explained by electrostatic solitary waves, however, low-frequency part is yet to be fully understood. The linear theory of low-frequency waves is developed in a four-component magnetized plasma consisting of three types of electrons, namely cold background electron, warm electrons, warm electron beam and ions. The electrostatic dispersion relation is solved, both analytically and numerically. For the parameters relevant to the auroral region, our analysis predict excitation of electron acoustic waves in the frequency range of 17 Hz to 2.6 kHz with transverse wavelengths in range of (1–70) km. The results from this model may be applied to explain some features of the low-frequency part of the broadband electrostatic noise observed in other regions of the magnetosphere.  相似文献   

17.
Intense (n + 1/2) fce emissions are a common phenomenon observed in the terrestrial inner magnetosphere. One of their interests is their possible effect in the pitch angle scattering of plasmasheet keV-electron, leading to diffuse auroras. In this paper, we present CLUSTER’s point of view about this topic, in the equatorial region of the plasmasphere, via a statistical study using 3 years of data. Spectral characteristics of these waves, which represent an important clue concerning their generation mechanism, are obtained using WHISPER data near perigee. Details on the wave spectral signature are shown in an event study, in particular their splitting in fine frequency bands. The orbit configuration of the four spacecraft offers a complete sampling on all MLT sectors. A higher occurrence rate of the emissions in the dawn sector and their confinement to the geomagnetic equator, pointed out in previous studies, are confirmed and described with additional details. The proximity of emission sites, both to the plasmapause layer and to the geomagnetic equator surface, seems to be of great importance in the behaviour of the (n + 1/2) fce wave characteristics. Our study indicates for the first time, that both the intensity of (n + 1/2) fce emissions, and the number of harmonic bands they cover, are increasing as the observation point is located further away outside from the plasmapause layer. Moreover, a study of the wave intensity in the first harmonic band (near 3/2 fce) shows higher amplitude for these emissions than previous published values, these emissions can play a role in the scattering of hot electrons. Finally, geomagnetic activity influence, studied via time series of the Dst index preceding observations, indicates that (n + 1/2) fce emission events are observed at CLUSTER position under moderate geomagnetic activity conditions, no specific Dst time variation being required.  相似文献   

18.
Waves in the Ultra Low Frequency (ULF) band owe their existence to solar wind turbulence and transport momentum and energy from the solar wind to the magnetosphere and farther down. Therefore an index based on ULF wave power could better characterize solar wind–magnetosphere interaction than KP, Dst, AE, etc. indices which described mainly quasi-study state condition of the system. We have shown that the ULF wave index accurately characterize relativistic electron dynamics in the magnetosphere as these waves are closely associated with circulation, diffusion and energization of relativistic electrons in the magnetosphere. High speed solar wind streams also act as a significant driver of activity in the Earth’s magnetosphere co-rotating interaction region and are responsible for geomagnetic activities. In the present paper, we have analyzed various cases related with very weak (quiet) days, weak days, storm days and eclipse events and discussed the utility of the ULF wave index to explain the magnetospheric dynamics and associated properties. We have tried to explain that the ULF wave index can equally be useful as a space weather parameter like the other indices.  相似文献   

19.
有限β等离子体中密度和磁场不均匀驱动的动理学Alfven波   总被引:1,自引:0,他引:1  
在分析有限β等离子体中的密度、磁场不均匀引起的漂移波不稳定性的基础上,剖析了漂移波不稳定性对动理学Alfven波激发的作用.动理学理论能正确地处理有限拉莫半径效应和波粒共振相互作用,本文根据带电粒子在电磁场中的运动特性,采用Vlasov方程描述离子运动,运用漂移动理学方程对电子运动进行描述.密度不均匀和磁场不均匀对产生漂移不稳定性的对比分析表明:在有限β等离子体中,密度不均匀比磁场不均匀更易激发漂移不稳定性,且密度不均匀激发漂移不稳定性中的能量转换和转移更为强烈.这种能量的转换为动理学Alfven波的激发提供了物理基础.所得数值解表明:动理学Alfven波在磁层中能广泛地被激发产生,特别是在磁层空间的极尖区、磁层顶和等离子体片边界层等具有明显的不均匀性区域中更容易被激发产生.本文的研究结果进一步表明动理学Alfven波对磁层空间中能量传输具有重要作用.  相似文献   

20.
A general model for the ion- and electron-acoustic solitons and double layers in a multi-component unmagnetized plasma consisting of background electrons, counter-streaming electron beams and ions is discussed. The model is based on the multi-fluid equations and the Poisson equation, and uses the Sagdeev pseudo-potential techniques. For identical counter-streaming electron beams and depending upon the plasma parameters, three types of solutions, namely, ion-acoustic, slow and fast electron-acoustic soliton/double layer, are possible. Generally, the ion acoustic solitons have positive potentials, slow-electron acoustic solitons have negative potentials and fast electron-acoustic solitons and double layers can have either positive or negative potentials depending on the core electron density. As beam speed is increased, first ion-acoustic and then slow electron-acoustic solitons disappear. At large beam speed, only fast electron-acoustic solitons/double layers survive. The results may be relevant to the observations of the electrostatic solitary waves (ESWs) observed in the Earth’s magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号