首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This review presents numerous recent examples of interesting variations in the composition and intensity of the hot ion flux (10 eV - 15 keV/e) provided by the AUREOL-3 satellite as a function of latitude and local time during periods of magnetic activity. In particular, these results reveal that although H+ is the most abundant ion during magnetically quiet periods, the ion composition of hot plasma at ionospheric altitudes is quite variable, and depends strongly on magnetic activity; results obtained during main and recovery phases of several magnetic storms demonstrate clearly (below 15 keV/Q) the great importance of the low altitude ionospheric source (H+, O+, and to a lesser degree He+) particularly at low latitudes (L ~ 3 - 4) where the flux of O+ ions becomes very large and even dominates. The results of the AUREOL-3 ion spectrometers establish the fact that upflowing suprathermal ionospheric ions (Ei < 100 eV/e) appear over large regions of the auroral ionosphere, the polar caps, and the polar cusp, as well as in or at the boundary of the plasmasphere during magnetospheric substorms or magnetic storms, and may consequently contribute significantly to the plasma sheet and to the inner storm time ring current. Most of the properties of the storm time ring current found by the GEOS, SCATHA, and ISEE satellites apply to lower altitudes, although the role of the ionospheric and/or plasmaspheric source appears accentuated.  相似文献   

2.
Energetic ion composition measurements have now been performed from earth orbiting satellites for more than a decade. As early as 1972 we knew that energetic (keV) ions of terrestrial origin represented a non-negligible component of the storm time ring current. We have now assembled a significant body of knowledge concerning energetic ion composition throughout much of the earth's magnetosphere. We know that terrestrial ions are a common component of the hot equatorial magnetospheric plasma in the ring current and the plasma sheet out to ? 23 RE. During periods of enhanced geomagnetic activity this component may become dominant. There is also clear evidence that the terrestrial component (specifically O+) is strongly dependent on solar cycle. Terrestrial ion source, transport, and acceleration regions have been identified in the polar auroral region, over the polar caps, in the magnetospheric boundary layers, and within the magnetotail lobes and plasma sheet boundary layer. Combining our present knowledge of these various magnetospheric ion populations, it is concluded that the primary terrestrial ion circulation pattern associated with enhanced geomagnetic activity involves direct injection from the auroral ion acceleration region into the plasma sheet boundary layer and central plasma sheet. The observed terrestrial component of the magnetospheric boundary layer and magnetotail lobes are inadequate to provide the required influx. They may, however, contribute significantly to the maintenence of the plasma sheet terrestrial ion population, particularly during periods of reduced geomagnetic activity. It is further concluded, on the basis of the relative energy distributions of H+ and O+ in the plasma sheet, that O+ probably contributes significantly to the ring current population at energies inaccessible to present ion composition instrumentation (? 30 keV).  相似文献   

3.
The cleft ion fountain has been identified as a prodigious source of upflowing suprathermal ionospheric plasma. Modeling efforts have traced the path of these ions from the polar ionosphere along trajectories where the ions are energized to keV energies and deposited in the near earth plasma sheet. Mass and energy dispersion of these ions accounts in a natural way for the observed variation in heavy ion content of the plasma sheet. Observations of ion composition in the plasma sheet by the AMPTE and ISEE spacecraft establish that ionospheric ions dominate in the near earth plasma sheet but solar wind ions become significant tailward. The heavy ion content of the plasma sheet increases with both solar cycle and magnetic activity. Direct injection of ionospheric ions into the ring current has been observed in the outer plasmasphere. Several mechanisms for the direct injection of ions from the plasmasphere and ionosphere into the ring current have appeared. Estimation of ionospheric source strengths and residence times have led to an estimate of the magnetospheric densities that would result solely from an ionospheric outflow populating the magnetosphere. Estimated densities were quite reasonable even without inclusion of a solar wind source of ions. Ring current ions decay primarily via charge exchange with the hydrogen geocorona, however, the roles of pitch angle diffusion and Coulomb collisions in this decay process are being clarified.

Modeling and observations of ENA by the 1SEE1 spacecraft has led to a re-affirmation of the dominant role of charge exchange in ring current decay. Ion cyclotron waves contribute to ring current decay in the dusk bulge region. The role of low frequency. (< 1 Hz) ion cyclotron waves in the plasmasphere is still unclear. Other wave modes may be responsible for the pitch angle diffusion and subsequent loss of ring current ions. Coulomb collisional energy losses from ring current O+ to thermal electrons are sufficient to power SAR arcs and represent an energy sink for ring current O+ within the plasmasphere. Coulomb collisions may be important for decay of low energy (< 10 KeV) ring current ions in the plasmasphere.  相似文献   


4.
The ionization of the gas ejections from the Io satellite into the Jovian magnetosphere by the corotating magnetospheric plasma flow is considered. It is shown that the plasma flow velocity at the Io orbit exceeds the critical velocity at which the anomalous electron ionization of the heavy gas components takes place due to collisionless energy transfer from ionized gas atoms to plasma electrons. The energy, number density and spatial distribution of suprathermal electrons is calculated using the quasilinear theory of newly ionized atoms instability in a moving plasma. Saturation of the plasma density build up in a plasma is considered in terms of the instability quenching by Coulomb collisions.  相似文献   

5.
The plasma diagnostic experiments on the AUREOL-3 satellite have revealed flows of low energy 0+ ions deep inside the night plasmasphere during a large substorm. Flux gradients of the 0+ ions were accompanied by enhancements of ELF electric field noise. The appearance of suprathermal ions at L ? 2.5 – 3 is interpreted within the framework of electrostatic ion-cyclotron acceleration of ionospheric ions in the diffuse auroral zone /12/ followed by a radial displacement of these ions inside the plasmasphere driven by azimuthal electric fields during substorm activity. Electrostatic oscillations observed inside the plasmasphere are apparently associated with gradient instability at the sharp boundaries of suprathermal ion flows.  相似文献   

6.
It is clear that the primary energy source for magnetospheric processes is the solar wind, but the process of energy transfer from the solar wind into the magnetosphere, or rather, to convecting magnetospheric plasma, appears to be rather complicated. Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy during its passage through the bow shock front. The transition layer (magnetosheath) can use part of this energy for accelerating of plasma, but can conversely spend part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer (sink) and generator (source) of electric power depending upon special conditions. The direction of the current behind the bow shock front depends on the sign of the IMF Bz-component. It is this electric current which sets convection of plasma in motion.  相似文献   

7.
Ion flows from the ionosphere into the magnetosphere fall into two main categories: cold (<1eV), “classical” polar wind and heated (>1eV), suprathermal ion outflows. A wealth of new understanding of these outflows has resulted from the Dynamics Explorer Mission. This review describes both the confirmation of the predicted classical polar wind as well as the revelation of a great variety of low-energy suprathermal outflows: the cleft ion fountain, the nightside auroral fountaion (X-events, toroids and field-aligned flows) and polar cap outflows. The main emphasis is placed on flows at energies below about 50eV, observed by the Retarding Ion Mass Spectrometer (RIMS) on board the Dynamics Explorer 1 satellite; limited comparisons are made with results from other instruments which sample different energy ranges.  相似文献   

8.
Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed ( and ). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = −V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T ? T, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2–4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.  相似文献   

9.
Our current understanding of the thermal plasma in the atmosphere and its coupling to the ionosphere is reviewed. Existing models appear adequate to explain the gross behavior of the cold thermal plasma, but there remain some vexing problems. Notably, (1) why does the density in flux tubes appear to saturate at lower values than are predicted theoretically, (2) what causes the sunset peak in measured Te, and (3) why does the equatorial plasmapause signature differ in latitude from the ionosphere signatures. The more difficult problem of what happens during the early stages of refilling after a magnetic storm, when the high altitude plasma is likely to be supersonic and collisionless, has received much attention, but the results are not definite. A number of papers have dealt with the interaction of supersonic counterstreaming fluxes and there are now models that can handle the transition from supersonic to subsonic flows although the transition from a collisionless to a collision-dominated plasma remains difficult to deal with.  相似文献   

10.
利用MMS观测数据,对磁层顶通量绳内离子惯性尺度(di)的结构进行分析研究.结果发现,许多不同尺度(约1di至数十di)的通量绳内都存在具有di尺度的电流 j m,其方向在磁层顶局地坐标系的-M方向,即与磁层顶查普曼-费拉罗电流同向,由电子在+M方向的运动( v em)携带.这些电流结构具有以下特征:磁鞘与磁层成分混合,磁场为开放形态;离子去磁化,电子与磁场冻结;N方向(即垂直于磁层顶电流片方向)的电场 E n显著增大,幅度达到约20mV·m-1,并伴有明显的尖峰状起伏,该增强和尖峰状起伏的电场对应于霍尔电场.分析表明,电流、电子与离子运动的偏离以及霍尔电场之间遵从广义欧姆定律,三者密切关联.进一步对磁层顶磁重联的探测数据进行分析发现,在很多重联区内也存在与通量绳内相似的结构,其尺度约为di量级,其中霍尔电场 E N、电流 j M和电子速度 v eM均与通量绳内对应物理量的方向相同且幅度相近.基于上述观测事实,采用经典FTE通量绳模型,对通量绳内电流、电子运动和霍尔电场的起源进行了初步探讨,认为其来源于磁层顶无碰撞磁重联区内的相应结构,并且后者在离子尺度通量绳的形成过程中起到重要作用.   相似文献   

11.
Data from the particle experiment aboard the AUREOL-3 polar satellite show that about 30% of the summer cusp crossings are characterised by a clear latitudinal energy dispersion of the solar wind ions. This energy-latitude correlation is observed at very high latitudes, 80° – 85°, near the polar boundary of the cusp, as an increase of the ion average energy with latitude. These structures have a typical latitude extent of 1° – 2° at ionospheric heights and correspond to a northward-directed IMF. These observations are consistent with a sunward convection of the foot of the magnetic flux tubes recently merged with a northward directed interplanetary magnetic field.  相似文献   

12.
利用二维全粒子模拟方法研究了无碰撞等离子体中的磁场重联过程,得到了不同区域的离子和电子速度分布.计算结果表明,电子和离子在扩散区中的不同动力学特性产生的Hall电流使磁场的y分量By呈现四极形分布.离子和电子的速度分布偏离了初态时的Maxwell分布,呈现非局域的多重分布.同时由于磁场重联而产生的电场使电子在X点附近得到加速和加热,因而在电子的能谱分布中形成-高能尾。  相似文献   

13.
The transport of ions from the polar ionosphere to the inner magnetosphere during stormtime conditions has been computed using a Monte Carlo diffusion code. The effect of the electrostatic turbulence assumed to be present during the substorm expansion phase was simulated by a process that accelerated the ions stochastically perpendicular to the magnetic field with a diffusion coefficient proportional to the energization rate of the ions by the induced electric field. This diffusion process was continued as the ions were convected from the plasma sheet boundary layer to the double-spiral injection boundary. Inward of the injection boundary, the ions were convected adiabatically. By using as input an O+ flux of 2.8 × 108 cm?2 s?1 (w > 10 eV) and an H+ flux of 5.5 × 108 cm?2 s?1 (w > .63 eV), the computed distribution functions of the ions in the ring current were found to be in good agreement, over a wide range in L (4 to 8), with measurements made with the ISEE-1 satellite during a storm. This O+ flux and a large part of the H+ flux are consistent with the DE satellite measurements of the polar ionospheric outflow during disturbed times.  相似文献   

14.
“嫦娥1号”(CE-1)、“嫦娥2号”(CE-2)都安装了1台太阳高能粒子探测器(High-energetic ParticlesDetectors,HPD)和2台太阳风离子探测器(Solar Wind Ion Detectors,SWIDs),进行了月球轨道200 km和100 km空间环境探测,获得了月球轨道空间高能带电粒子(质子、电子和重离子)能谱随时间的演化特征、等离子体与月球相互作用特征以及太阳风离子速度、密度和温度参量。空间环境探测数据分析结果表明:太阳活动低年、空间环境扰动水平相对较低、月球处于太阳风中时,近月空间带电粒子环境的基本特征与行星际空间相比变化不大。CE-1、CE-2在轨运行期间,发现了多起0.1~2 MeV能量电子急剧增加事件,这些事件发生在月球从太阳风运动到磁尾的所有空间区域,其中20%的事件伴随着卫星周围等离子体离子加速。模拟和统计研究表明:能量电子急剧增加使得绕月卫星和月球表面电位大幅下降导致了离子加速现象的发生;能量电子总流量大于1011 cm-2时,绕月卫星和月球表面充电电位可达负的上千伏。此外,月表溅射与反射太阳风离子、太阳风“拾起”离子等空间环境事件的发现,揭示了太阳风离子和月球存在复杂的相互作用过程。  相似文献   

15.
The electron temperature (Te) variation in the mid-latitude ionosphere at altitudes between 120 – 800 km has been modelled for various seasonal and solar-cycle conditions. The calculated electron temperatures are consistent with plasma densities and ion temperatures computed from a time-dependent ionospheric model. The Te distribution can be represented by a subset of standard Te profiles. Te above 200 km is controlled by the magnetospheric heat flux into the ionosphere. For realistic values of the magnetospheric heat flux, the maximum electron temperature ranges from 3000 to 10,000 K at 800 km. The effect of increasing the heat flux is to increase the topside temperature but retain the profile shape. Hence, given a topside Te observation and selection of an appropriate profile shape, the entire Te distribution can be computed.  相似文献   

16.
We report on the typical structure of the large scale ion precipitation in the morning sector of the auroral zone and associated low frequency electromagnetic waves. Data obtained during near radial passes of the AUREOL-3 satellite point to a distinction between two main precipitation regions: 1) In the poleward part of the auroral zone the latitudinal variation of the average energy (or temperature) of the precipitated ions (mainly H+) indicate that they are adiabatically accelerated in the outer magnetosphere. This “high energy” (? 3 to > 20 keV) precipitation is usually associated with a low energy (E < 110 eV) upward flowing 0+ and H+ component, and 2) near the boundary between discrete and diffuse electron aurorae a drastic change in the ion characteristics is observed. The flux of energetic precipitated H+ ions is sharply reduced, which suggests the formation of an Alfvén layer. However, intense fluxes of precipitated H+, O+, and He+ ions with energies < 3 keV are observed equatorward of the Alfvén layer, in coincidence with the diffuse aurora and in association with quasi-monochromatic electromagnetic waves with frequencies around the proton gyrofrequency. As the characteristic convection and bounce times of the low energy upward flowing ion component are comparable (τ > 3 hours) we suggest that the precipitation of ionospheric ions inside the diffuse aurora results from convection and corotation of the ions accelerated to suprathermal energies at higher latitudes.  相似文献   

17.
The plasmasphere is filled with very low energy plasma upwelling from the topside ionosphere. The field-aligned distribution of this thermal ionospheric plasma is controlled by the gravitational and centrifugal potential distribution. There are two extreme types of hydrostatic plasma distribution in this field-aligned potential : the Diffusive Equilibrium distribution and the Exospheric Equilibrium distribution corresponding respectively to a saturated and to an almost empty magnetic flux tube. As a result of pitch angle scattering by Coulomb collisions an increasing number of ions escaping from the ionosphere are stored on trapped orbits with mirror points at high altitudes in the low density region. As a result of collisions the field-aligned density distribution gradually changes from exospheric equilibrium with a highly anisotropic pitch angle (cigar like) distribution to a diffusive equilibrium with a nearly isotropic pitch angle distribution. It is shown that the suprathermal ions become anisotropic much more slowly than ions of energies smaller than 1 eV. The Coulomb collision times have been estimated for flux tubes at different L values. A numerical simulation of the flux tube refilling process has been presented. The diurnal variation of the equatorial plasma density has been illustrated for plasma elements convected along drift paths which have a large dawn- dusk asymetry. The formation of a Light Ion Trough is discussed. Finally, evidence has also been given for the existence of a ‘plasmaspheric wind’ corresponding to a slow subsonic and continuous radial expansion of the plasma stored in the plasmasphere.  相似文献   

18.
This paper introduces an investigation of shocklike soliton or small amplitude Double Layers (DLs) in a collisionless plasma, consisting of positive and negative ions, nonthermal electrons, as well as solar wind streaming protons and electrons. Gardner equation is derived and its shocklike soliton solution is obtained. The model is employed to recognize a possible nonlinear wave at Venus ionosphere. The results indicate that the number densities and velocities of the streaming particles play crucial role to determine the polarity and characteristic features (amplitude and width) of the shocklike soliton waves. An electron streaming speed modifies a negative shocklike wave profile, while an ion streaming speed modulates a positive shocklike wave characteristic.  相似文献   

19.
The mass-loading concept is discussed in relation to the dynamics of magnetoplasma streaming through rarefied background gas. Changes in energy and momentum flux (generally losses) can outweigh the increases in mass flux. Suprathermal ion components cannot be simply described in fluid terms: as shown by the probes to comet Halley, the main cometary ions are depleted by interaction with the background gas faster than they are scattered and thermalised by plasma turbulence. MHD instabilities tend to isotropize pitch angles but do not thermalise the ions, while wave steepening into a bow shock occurs outside positions expected from mass-loading. In the strongly-loaded subsonic region, charge exchange of suprathermal ions causes energy losses that can be more significant than further increases of mass. Non-parallel pick-up of new implanted ions, large gyroradii and finite spatial scales also limit the validity of fluid models.  相似文献   

20.
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号