首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   

2.
High Energy Charged Particle Experiment (HECPE) is to measure the fluxes of MeV electrons and tens of MeV protons. The two satellites of KuaFu-B are in the same polar orbit with apogee 7.0RE, perigee 1.8RE. They can sweep large L values and pass through the inner and outer radiation belts. The high energy electrons and protons in the radiation belts are principal sources for failures of satellites and spacecrafts in the Earth orbits. The enhancements of the high energy electrons and protons, so-called energetic particle events, are important phenomena of the Space Weather. The energy ranges monitored by HECPE are 0.3–0.5 MeV, 0.5–1.0 MeV, 1.0–2.0 MeV, and E > 2.0 MeV for electrons, 5–10 MeV, 10–20 MeV, 20–40 MeV, and 40–80 MeV for protons.  相似文献   

3.
We have measured the X-ray flux of the bright galactic bulge source GX17+2 in the energy range 1–20 keV using the EXOSAT ME experiment. During 8 hours of continuous observation an X-ray flare was observed (lasting ~1 hr) followed by an intensity increase. The data show intensity dips with a quasiperiod of ~1.4 hours and quasi-periodic oscillations on time scale of 200–500 sec, which are possibly connected with oscillations of an accretion disc. The spectrum can be fitted by two blackbody spectra with kT1~1keV, and kT2~2keV, respectively, and an iron line at 6.3 ± 0.3 keV having 130 eV equivalent width. While the low energy component is rather stable, the 2keV-component shows considerable intensity variations. We suggest that the latter component represents emission from the inner part of the accretion disc while the soft spectrum is blackbody emission from the surface of the neutron star.  相似文献   

4.
Power-law spectra f(E)∝E?2.7 of < 40 keV suprathermal ions within ~107 km of propagating interplanetary shocks are explained by diffusive scattering near a plane shock. The theory fits the 25 November 1977 event with a mean free path perpendicular to the shock with is 0.01 AU in front of the shock and less than .0003 AU behind it, for 1 keV ions. The theory predicts a steepening spectrum at higher energies, of the form f(v)∝v?4exp(??λdv/ur) where u = (ΔV)2/2VW depends on the plasma velocity jump ΔV and the plasma speed VW and mean free path λ in front of the shock  相似文献   

5.
The cosmic noise absorption is presented in terms of two-dimensional images obtained from the imaging riometers operated at the Southern Space Observatory (geographic coordinate: 29.4° S, 53.1° W), in São Martinho da Serra, Brazil, Concepcion (geographic coordinate: 36.5° S, 73.0° W) and Punta Arenas (geographic coordinate: 53.0° S, 70.5° W) in Chile, which belong to the South American Riometer Network and are located at the central and periphery regions of the South American Magnetic Anomaly. Correlations are performed between the maximum cosmic noise absorption observed at these stations and the energetic electron flux in two energy channels (>30 and >300 keV) and the proton flux in three energy channels (80–240, 800–2500 and >6900 keV) as measured by the Medium Energy Proton and Electron Detector, during a moderate geomagnetic storm that occurred on September 3, 2008. The results show high correlations between the cosmic noise absorption detected at São Martinho da Serra and the flux of protons with energy between 80 and 240 keV, and the flux of electrons with energies higher than 300 keV, while an additional ionization at Concepcion was correlated with electrons of energies higher than 30 keV. The cosmic noise absorption detected at Punta Arenas was probably caused by the increase of the protons flux with energy between 80 and 240 keV.  相似文献   

6.
This paper examines high resolution (ΔE/E = 0.15) photoelectron energy spectra from 10 eV to 1 keV, created by solar irradiances between 1.2 and 120 nm. The observations were made from the FAST satellite at ∼3000 km, equatorward of the auroral oval for the July–August, 2002 solar rotation. These data are compared with the solar irradiance observed by the Solar EUV Experiment (SEE) on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and fluxes calculated using the Field Line Interhemispheric Plasma (FLIP) code. The 41 eV photoelectron flux, which corresponds to solar EUV fluxes near 20 nm, shows a clear solar rotation variation in very good agreement with the EUV flux measurements. This offers the possibility that the 41 eV photoelectron flux could be used as a check on measured solar EUV fluxes near 20 nm. Because of unexpected noise, the solar rotation signal is not evident in the integral photoelectron flux between 156 and 1000 eV corresponding to EUV wavelengths between 0.1 and 7 nm measured by the SEE instrument. Examination of daily averaged photoelectron fluxes at energies between 25 and 500 eV show significant changes in the photoelectron spectra in response X and M class flares. The intensity of photoelectrons produced in this energy region is primarily due to two very narrow EUV wavelength regions at 2.3 and 3 nm driving Auger photoionization in O at 500 eV and N2 at ∼360 eV. Comparison of calculated and daily averaged electron fluxes shows that the HEUVAC model solar spectrum used in the FLIP code does not reproduce the observed variations in photoelectron intensity. In principle, the 21 discrete photoelectron energy channels could be used to improve the reliability of the solar EUV fluxes at 2.3 and 3 nm inferred from broad band observations. In practice, orbital biases in the way the data were accumulated and/or noise signals arising from natural and anthropogenic longitudinally restricted sources of ionization complicate the application of this technique.  相似文献   

7.
The problem of interplanetary acceleration of low energy protons in association with shock waves is examined in the context of the specific event observed on 11 February 1979 on board the ISEE-3 spacecraft. This event has been selected for special study as it apparently was not associated with a solar flare event. The low energy proton telescope system on ISEE-3 measures the proton distribution function with good spectral, directional and temporal resolution from Ep = 35 keV. The evolution of the anisotropies and of the energy spectrum during the event are consistent with particle acceleration taking place in the vicinity of the shock wave.  相似文献   

8.
Centaurus A (Cen A, NGC 5128) is the nearest active galaxy and, notably, the viewing angle with respect to the jet axis is very large (> 70°). A first contemporaneous OSSE, COMPTEL, and EGRET spectrum obtained in October 1991 covers an energy range from 50 keV up to 1 GeV. This γ-ray broad-band spectrum was taken when Cen A was in an intermediate emission state as defined by the BATSE X-ray light-curve. The first simultaneous multiwavelength spectrum from radio to γ-rays was measured in July 1995 when Cen A was in a low emission state (the prevailing state for the last 7 years). The different spatial and temporal resolution in the different frequency regimes produces problems in the construction and interpretation of the multiwavelength spectra. These are addressed in this paper. The detection of emission > 1 MeV makes the inclusion of such high-energy emission into models for the spectral energy distribution mandatory.  相似文献   

9.
A statistical survey of energetic ions (> 20 keV) observed by the DOK2 experiment on Interball-1 during foreshock intervals from 1996 to 1998 is presented. Flux levels depend on the connection geometry, with higher values at quasi-parallel shocks, particularly at lower energies. The decrease of flux in diffusive events with distance from the bow shock is consistent with results from earlier surveys performed closer to the bow shock. The energy spectra are softer for quasi-parallel than quasi-perpendicular connections. The reflected ions have musch softer spectra. The cumulative frequencies for flux level occurrence patterns exhibit differences for quasi-parallel and quasi-perpendicular geometries up to approximately 200 keV.  相似文献   

10.
Recent advances have enabled simultaneous Hα and X-ray observations with substantially improved spatial, spectral, and temporal resolution. In this paper we study two events observed as part of a coordinated observing program between the Solar Maximum Mission and Sacramento Peak Observatory: the flares of 1456 UT, 7 May 1980 and 1522 UT, 24 June 1980. Using recently-developed physical models of static flare chromospheres, and corresponding theoretical Hα line profiles, we can distinguish effects of intense nonthermal electron heating from those of high conduction and pressure from the overlying flare corona. Both flares show the signature of intense chromospheric heating by fast electrons, temporally correlated with X-ray light curves at E > 27keV, and spatially associated with X-ray emission sites at E >62; 16 keV. Interpreting the Hα line profile observations using the theoretical Hα line profiles, we infer values of the thick-target input power contained in nonthermal electrons that are observationally indistinguishable (within a factor of 2–3) from those inferred from the X-ray data. Although these events are small, the energy flux values are large: of order 1011 ergs cm?2 s?1 above 20 keV.  相似文献   

11.
We report on the typical structure of the large scale ion precipitation in the morning sector of the auroral zone and associated low frequency electromagnetic waves. Data obtained during near radial passes of the AUREOL-3 satellite point to a distinction between two main precipitation regions: 1) In the poleward part of the auroral zone the latitudinal variation of the average energy (or temperature) of the precipitated ions (mainly H+) indicate that they are adiabatically accelerated in the outer magnetosphere. This “high energy” (? 3 to > 20 keV) precipitation is usually associated with a low energy (E < 110 eV) upward flowing 0+ and H+ component, and 2) near the boundary between discrete and diffuse electron aurorae a drastic change in the ion characteristics is observed. The flux of energetic precipitated H+ ions is sharply reduced, which suggests the formation of an Alfvén layer. However, intense fluxes of precipitated H+, O+, and He+ ions with energies < 3 keV are observed equatorward of the Alfvén layer, in coincidence with the diffuse aurora and in association with quasi-monochromatic electromagnetic waves with frequencies around the proton gyrofrequency. As the characteristic convection and bounce times of the low energy upward flowing ion component are comparable (τ > 3 hours) we suggest that the precipitation of ionospheric ions inside the diffuse aurora results from convection and corotation of the ions accelerated to suprathermal energies at higher latitudes.  相似文献   

12.
Observations and their analysis of the thermal X-ray spectrum of the M2 flare on 2003 April 26 are described. The spectrum observed by the RHESSI mission cover the energy range from ∼5 to ∼50 keV. With its ∼1-keV spectral resolution, intensities and equivalent widths of two line complexes, the Fe line group at 6.7 keV (mostly due to Fe xxv lines and Fe xxiv satellites) and the Fe/Ni line group at 8 keV (mostly due to higher-excitation Fe xxv lines and Ni xxvii lines) were obtained as a function of time through a number of flares. The abundance of Fe can also be determined from RHESSI spectra; it appears to be consistent with a coronal value for at least some times during the flare. Comparisons of RHESSI spectra with those from the RESIK crystal spectrometer on CORONAS-F show very satisfactory agreement, giving much confidence in the intensity calibration of both instruments.  相似文献   

13.
We present the results of a preliminary spectral analysis performed on the BeppoSAX and XMM observations of the Vela plerion. The broad energy range covered by the instruments on board the two observatories allows an evaluation of the spectral parameters of the high energy emission model and provides an indication on the morphology of the source emission above 10 keV. We confirm the softening of the PWN spectrum (3–10 keV band) at distances greater than 4′ from the pulsar and estimate the diameter of the high energy (>10 keV) emission region to be on the order of 25′–30′.  相似文献   

14.
We have analysed a sample of 328 time-integrated GRB prompt emission spectra taken via the Konus instrument on board the US GGS-Wind spacecraft between 2002 and 2004 using a couple of two-components models, Cut-off Power Law (CPL) + Power Law (PL) and blackbody (BB) + PL. The spectra show clear deviation from the Band function. The PL term is interpreted as the low energy tail of a nonthermal emission mechanism. The distributions of corresponding index β give values β < −2/3 consistent with synchrotron and synchrotron self-Compton mechanisms. The distribution of low energy index α associated with the CPL term shows clear discordance with synchrotron models for 31.4% of the analysed GRBs with values exceeding that for the line of death, α = −2/3. Then, a set of nonthermal radiation mechanisms producing harder slopes, i.e., α > −2/3, are presented and discussed. For the remaining majority (68.6%) of GRBs with CPL index α < −2/3, we show that optically thin synchrotron produced by a power law electron distribution of type, N(γ) ∼ γp, γ1 < γ < γ2, for finite energy range (γ2 ≠ ∞) is a likely emission mechanism with α ∼−(p + 1)/2 in the frequency range ν1 ? ν ? ν2 (where ν2 = η2ν1 with η = γ2/γ1), such that for p > 1/3, one gets α < −2/3. We also show that corresponding spectra in terms of Fν and νFν functions are peaked around frequency ν2 instead of ν1, respectively for p < 1 and p < 3. Besides, thermal emission is examined taking a single Planck function for fitting the low energy range. It can be interpreted as an early emission from the GRB fireball photosphere with observed mean temperature, kT′ ∼ 16.8 keV. Furthermore, we have performed a statistical comparison between the CPL + PL and BB + PL models finding comparable χ2-values for an important fraction of GRBs, which makes it difficult to distinguish which model and specific radiation mechanism (possible thermal or nonthermal γ-ray emissions) are best suitable for describing the reported data. Therefore, additional information for those bursts, such as γ-ray polarization, would be highly desirable in future determinations of GRBs observational data.  相似文献   

15.
Propagation of UHE protons through CMB radiation leaves the imprint on energy spectrum in the form of Greisen–Zatsepin–Kuzmin (GZK) cutoff, bump (pile-up protons) and dip. The dip is a feature in energy range 1 × 1018–4 × 1019 eV, caused by electron–positron pair production on CMB photons. Calculated for power-law generation spectrum with index γg = 2.7, the shape of the dip is confirmed with high accuracy by data of Akeno-AGASA, HiRes, Yakutsk and Fly’s Eye detectors. The predicted shape of the dip is robust: it is valid for the rectilinear and diffusive propagation, for different discreteness in the source distribution, for local source overdensity, deficit, etc. This property of the dip allows us to use it for energy calibration of the detectors. The energy shift λ for each detector is determined by minimum χ2 in comparison of observed and calculated dip. After this energy calibration the absolute fluxes, measured by AGASA, HiRes and Yakutsk detectors remarkably coincide in energy region 1 × 1018–1 × 1020 eV. Below the characteristic energy Ec ≈ 1 × 1018 eV the spectrum of the dip flattens for both diffusive and rectilinear propagation, and more steep galactic spectrum becomes dominant at E < Ec. The energy of transition Etr < Ec approximately coincides with the position of the second knee E2kn, observed in the cosmic ray spectrum. The dip-induced transition from galactic to extragalactic cosmic rays at the second knee is compared with traditional model of transition at ankle, the feature observed at energy 1 × 1019 eV.  相似文献   

16.
We present the results of a systematic study of narrow-line Seyfert 1 galaxies (NLS1s) observed with XMM-Newton. The 2–12 keV X-ray spectra of NLS1s are well represented by a single power law with a photon index Γ ∼ 2. When this hard power law continuum is extrapolated into the low energy band, we found that all objects in our sample show prominent soft excess emission. This excess emission is well parameterized by the thermal emission expected from an optically thick accretion disk, and we found the following three peculiar features: (1) The derived disk temperatures are significantly higher than the expectation from a standard Shakura-Sunyaev accretion disk, if we assume a central mass of a black hole to be 106–8M. (2) The temperatures are distributed within narrow range (ΔkT ∼ 0.08 keV) with an average temperature of 0.18 keV in spite of the range of four orders of magnitude in luminosity (1041–45 erg s−1). (3) We found a peculiar temperature–luminosity relation, where the luminosity seems to be almost saturated in spite of the significant change in temperature, during the observations of the most luminous NLS1 PKS 0558-504. These results strongly suggest that the standard accretion disk picture is no longer appropriate in the nuclei of NLS1s. We discuss a possible origin for the soft excess component, and suggest that a slim disk may be able to explain the observational results, if the photon trapping effect is properly taken into account.  相似文献   

17.
Short and long GRBs are thought to be two distinct classes based on their different duration and spectrum. Through the spectral analysis of two similarly selected samples of BATSE short and long GRBs, we show that short GRBs are harder than long events, confirming what found from the comparison of their hardness ratio. However, this spectral diversity seems to be due to a harder low energy spectral component of short GRBs, rather than a (slightly higher) peak energy. Interestingly short GRBs have a spectrum which is similar to the spectrum of the emission of the first 1–2 s of long events. We find evidence that short GRBs are inconsistent with the EpeakEiso correlation defined by long bursts while they follow the same EpeakLiso correlation of long GRBs. These results, coupled to the similar variability timescale of short events and the first seconds of long ones, suggest that a common (or similar) dissipation mechanism could operate in both classes. The difference in the duration would then be due mainly to the central engine lifetime.  相似文献   

18.
The results of proton energy (tens keV – several MeV) spectrum measurements near geomagnetic equator (L < 1.15) at low altitudes (<1000 km) are presented. We used data of experiments onboard ACTIVE, SAMPEX, NOAA TIROS-N satellites and SPRUT-VI (MIR station) and cover a time range of about 30 years (including previous measurements). It was found that the kappa-distribution function fits the experimental spectrum with the best correlation coefficient. A comparison of energy spectra of near-equatorial protons and ring-current protons was made. Using the estimation of the life time of near-equatorial protons we explain the difference in spectral indices of radiation belt and near-equatorial proton formation. We conclude that the ring current is the main source of the near-equatorial protons.  相似文献   

19.
Particle acceleration and transport at an oblique CME-driven shock   总被引:1,自引:0,他引:1  
In gradual solar energetic particle (SEP) events, protons and heavy ions are often accelerated to >100 MeV/nucleon at a CME-driven shock. In this work, we study particle acceleration at an oblique shock by extending our earlier particle acceleration and transport in heliosphere (PATH) code to include shocks with arbitrary θBN, where θBN is the angle between the upstream magnetic field and the shock normal. Instantaneous particle spectra at the shock front are obtained by solving the transport equation using the total diffusion coefficient κ, which is a function of the parallel diffusion coefficient κ and the perpendicular diffusion coefficient κ. In computing κ and κ, we use analytic expressions derived previously. The particle maximum energy at the shock front as a function of time, the time intensity profiles and particle spectra at 1 AU for five θBN’s are calculated for an example shock.  相似文献   

20.
Millimeter-wave continuum observations of high redshift (z3) radio loud quasars (RLQs) and radio intermediate quasars (RIQs) have been performed with the 45 m telescope of the Nobeyama Radio Observatory. Sixteen RLQs with S5GHz > 200 mJy and nine RIQs with 200 mJy > S5GHz > 20 mJy were observed at four millimeter-wave frequencies. All the observed quasars have synchrotron spectra and their possible dust emission component is obscured by the synchrotron emission in millimeter-wave frequencies, which can be explained by their strong AGN activities. Observed quasars are classified into three spectral classes, according to their millimeter-wave spectral index as steep spectrum, millimeter turn over and extreme flat spectrum quasars. Extreme flat spectrum quasars have relatively flat spectra up to 150 GHz, where the rest frequency is higher than 600 GHz. This is an indication that the objects are in very young stage of quasar evolution and shows higher nuclear activity than lower redshift quasars. One of the QSOs, 2358+189 previously known as a RIQ, is found to have extreme flat spectrum, and is now classified as RLQs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号