首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GRASP Mission - Gamma Ray Astronomy with Spectroscopy and Positioning - will be the first high resolution spectral imager to operate in the gamma-ray region of the spectrum. The instrument covers the photon energy range from approximately 15 keV to more than 100 MeV. A combination of discrete germanium solid state devices and scintillation counters form a position sensitive gamma-ray detection matrix which is operated in conjunction with a coded aperture mask to create arc minute images of the gamma-ray sky with a spectral resolution of typically λ/Δλ ∼1000. The use of a coded mask with a ‘zoom’ facility will permit the combination of field of view and angular resolution to be adjusted to suit the scientific aims of each observation. The respective continuum and line sensitivities will be typically 10−8ph cm−2 s−1 keV−1 and 3 10−6 cm−2 s−1 for point sources of gamma-rays with photon energies close to 1 MeV.  相似文献   

2.
COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At present, it is performing a complete sky survey. In later phases of the mission selected celestial objects will be studied in more detail. The data from the first year of the mission have demonstrated that COMPTEL performs very well. First sky maps of the inner part of the Galaxy clearly identify the plane as a bright MeV-source (probably due to discrete sources as well as diffuse radiation). The Crab and Vela pulsar lightcurves have been measured with unprecedented accuracy. The quasars 3C273 and 3C279 have been seen for the first time at MeV energies. Both quasars show a break in their energy spectra in the COMPTEL energy range. The 1.8 MeV line from radioactive 26A1 has been detected from the central region of the Galaxy and a first sky map of the inner part of the Galaxy has been obtained in the light of this line. Upper limits to gamma-ray line emission at 847 keV and 1.238 MeV from SN 1991T have been derived. Upper limits to the interstellar gamma-ray emissivity have been determined at MeV-energies. Several cosmic gamma-ray bursts within the field-of-view have been located with an accuracy of about 1°. On 1991 June 9, 11 and 15, COMPTEL observed gamma-ray emission (continuum and line) from three solar flares. Also neutrons were detected from the June 9 and June 15 flares.  相似文献   

3.
The Franco-Soviet Signe experiments on Venera 11 and Venera 12 allow a spectral analysis of gamma-ray bursts with a time resolution of 250 ms. Evidence is presented for i) short annihilation flashes of up to 20 photons cm−2s−1 and ii) rapid variations of the continuum, from a study of the intense 4 November 1978 event.  相似文献   

4.
The Solar Maximum Mission γ-ray spectrometer (GRS) has detected an intense γ-ray burst that occurred on 1984 August 5. The burst originated from a source in the constellation Hydra and lasted about 45 s. Its integral fluence
20 keV was 3 × 10−3 erg cm−2. Spectral evolution similar to other bursts detected by SMM was observed. The overall shape of the spectrum from 20 keV to 100 MeV, on timescales as short as 2 s, is relatively constant. This shape can be fitted by the sum of an exponential-type function and a power law. The spectral shape of this event may be characteristic of many γ-ray bursts. There is no evidence for narrow or broadened emission lines.  相似文献   

5.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   

6.
The Oriented Scintillation Spectrometer Experiment (OSSE) for the Gamma Ray Observatory is described. OSSE uses four identical NaI(T1)-CsI(Na) phoswich detectors to provide gamma-ray line and continuum detection capability in the 0.05–10 MeV energy range. Additional gamma-ray and neutron detection capability is achieved above 10 MeV. Each detector has a CsI annular shield and a tungsten alloy collimator which define a 5° × 11° (FWHM) field-of-view. The detectors have independent, single-axis orientation systems which permit offset pointing to provide source-background subtraction. The sensitivity for line gamma rays in the 0.05–10 MeV region will be 2–3 × 10?5 photons/cm2-s for a 106-second observation period. The several modes of data acquisition and the emphases for the planned observational program are discussed.  相似文献   

7.
HEAO-1 observed hard radiations (X- and gamma-rays) from a major solar flare on 11 July 1978. The observations showed gamma-ray line and continuum emission extending to the highest energy observed. The lines are identified with the 2.2 MeV line of deuterium formation and the 4.4 MeV line of inelastic scattering on 12C, both previously observed in the flares of August 1972 [1]. The 11 July flare was identified as a white-light flare by observations at Debrecen [2]. It thus provides the first opportunity for a detailed examination of white-light flare theories that depend upon proton heating of the photosphere. The line strength over a four-minute integration at 2.2 MeV was 1.00 ± 0.29 ph(cm2 sec)−1, and the gamma-ray emission (excluding the 2.2 MeV line which was appreciably delayed) lagged by less than 20 sec approximately after the hard X-ray and microwave fluxes. We conclude that the “second-stage” acceleration of high-energy solar particles must commence promptly after the impulsive phase.  相似文献   

8.
The COMPTEL experiment on GRO images 0.7 – 30 MeV celestial gamma-radiation that falls within its 1 steradian field of view. During the first fifteen months in orbit, preliminary localizations from BATSE triggers indicated that about 1 in 6 cosmic events could have fallen within COMPTEL's field of view. We summarize work on the brightest of these gamma-ray bursts and present new position constraints for GRB 911118 and GRB 920622.  相似文献   

9.
A large area (6000 cm2) actively shielded low energy gamma-ray telescope is going to be built by an Anglo-Italian collaboration. The telescope, named ZEBRA, will be capable of producing images of the X and gamma ray sky in the energy range 0.015–20 MeV with an intrinsic angular resolution of a few tenths of a degree. A prototype detector has been built in order to experimentally study the main characteristics of the detection plane. The preliminary results obtained during a balloon flight from Trapani, Sicily in July 1981 are presented.  相似文献   

10.
Observations of interstellar gas in front of stars near the Sun are briefly reviewed to obtain for the properties of the local fluff: n−0.1 cm−3, ne 0.003 cm−3, T−11, 500 °K, and B−3−5 μG. The velocity vector obtained from He° λ584 backscattered data (V, 1, b) = (−25 km s−1, 3°, +17°) appears to adequately describe the heliocentric upwind velocity vector for the local fluff.  相似文献   

11.
Preliminary results from the SMM γ-ray spectrometer indicate the detection of a constant source of 0.511 MeV annihilation radiation from the Galaxy. This source was observed in each of 5 years as the region of the Galactic center passed through the instrument's ∼120° field of view. Any year-to-year variability appears to be less than 30%. The measured intensity of the source is model dependent: for a point source at the center the average flux is (1.6 - 2.9) × 10−3 γ cm−2 s−1; for a distributed source following the Galactic CO emission the flux is (1.4 - 2.7) × 10−3 γ cm−2 s−1 rad−1 (uncertainty is due primarily to systematic errors). It is likely that the radiation comes from a diffuse source and is not associated with the reported compact source at the Galactic center. We have no new information to report on the distribution of 26Al γ-rays. Upper limits of 1.5 × 10−3 γ cm−2 s−1 are placed on Doppler-shifted lines from SS433.  相似文献   

12.
We present a large area, balloon borne, NaI(Tl) detector for low-energy gamma rays with temporal signature : FIGARO.The main detector is a mosaic of 12 NaI(Tl) tiles 22.5 × 15 × 5 cm, for a total geometric area of 4050 cm2.In the energy band 140 keV - 6 MeV, the expected background counting rate at float altitude is in the range of two to three thousands counts per second.For pulsar analysis the expected 3δ sensitivity for 5 hours exposition time is 2.5 10?4 ph/cm2.s.MeV (150–500 keV) 1.5 10?4 ph/cm2.s.MeV (1–6 MeV). This performance, together with the large effective area and the relatively short duration of a balloon flight, make FIGARO particularly suitable for the identification of sources by means of temporal analysis.For objectives in the Northern sky, including the Crab pulsar, a transmediterranean flight is planned for the summer of 1982 ; a Southern mission is scheduled in Brazil for the fall of 1983 (Vela, PSR 1822-09).  相似文献   

13.
Recent gamma-ray observations of two Seyfert Galaxies are interpreted in terms of electron-positron pair annihilation radiation. A simplified scenario is envisaged in which a massive black hole is accreting material from an optically thin disk characterized by a hot (T > 109 °K) e± plasma. At these very high temperatures the 511 keV line emission loses its characteristic features to become both broadened and blue shifted. Observational X and gamma-ray data are used to investigate the possibility that the “bump” in the spectral emission at photon energies E ~ 1 MeV observed in Seyfert galaxies may be due to this annihilation feature. In particular the self consistency of the parameters estimated from the gamma-ray data is explored. Furthermore we investigate the possibility that this annihilation feature may be mirrored in the cosmic diffuse background and, under this assumption, we calculate the maximum temperature of the annihilation region and the average annihilation rate for Seyfert galaxies.  相似文献   

14.
We propose proton acceleration and subsequent secondary electron production as the process resposible for the radiation emission in γ-ray bursts. In this mechanism electrons are naturally injected at energies ⪢ mec2 and emission above 10 MeV is expected to be one of their common features, in agreement with observations showing that most of the luminosity of these events is emitted in γ-rays. This mode of injection guarantees copious e+-e pair production at the source and implies a relationship between the luminosity and the spectra of the bursts, the soft bursts being, in general, the most (intrinsically) luminous and hence the most distant. This, in turn, implies that bursts with soft spectra should show a galactic distribution, a fact consistent with the limited available data. It is also argued that the observed red-shift of the e+-e annihilation feature may not always be gravitational.  相似文献   

15.
The energy content of nonthermal particles in solar flares is shared between accelerated electrons and ions. It isimportant for understanding the particle acceleration mechanism in solar flares. Yohkoh observed a few intense flares which produced both strong gamma-ray lines and electron bremsstrahlung continuum. We analyze energy spectra of X-class solar flares on October 27, 1991(X6.1), November 6, 1997 (X9.4), July 14, 2000 (X5.7) and November 24, 2000 (X2.3). The accelerated electron and proton spectra are derived from a spectral analysis of their high-energy photon emission and the energy contents in >1 MeV electrons and >10 MeV protons are estimated to be 6×l028 – 4×1030 and 2×1028 – 5×1029 erg, respectively. We study the flare to flare variation in the energy content of >1 MeV electrons and >10 MeV protons for the four Yohkoh gamma-ray flares. Ratios of >1 MeV electron energy content to >10 MeV proton energy content are roughly within an order of magnitude.  相似文献   

16.
We compute the height profile of the electron production rate q resulting from high energy solar particle flux with spectrum D(E)=KE?n. Cut-offs energies of 10, 20, 30 and 40 MeV and power indices n from 1 to 6 are used. The profiles are normalized for K = 1 particle/(cm2.s.sr.MeV) such that they might be helpful when quantitatively investigating corpuscular effects of proton flares in the height interval 35 to 100 km.  相似文献   

17.
An unusual spectrum has been obtained over 126 ms at the onset of the intense 1978 November 19 gamma-ray burst recorded by the Franco-Soviet Signe experiments. Evidence is presented for two distinct components above and below 200 keV : a soft emission with a possible low-energy cutoff and a peak around 400 keV with an accompanying high-energy tail. As this peak contains > 95 percent of the total fluence at this time, we suggest the role of the e/e+ annihilation as an initial radiation process in gamma-ray bursts and we propose a possible interpretation of the high-energy tail.  相似文献   

18.
Preliminary results are reported for gamma ray observations of the galactic center region made during a 15 hour balloon flight from Alice Springs, Australia on April 18, 1979. The observations were carried out with the UCR double-scatter gamma-ray telescope at energies of 1 to 30 MeV. The observations are compatible with a galactic source of approximately equal brightness along the region 300°<ℓII<60°. The energy distribution joins smoothly to previous spark chamber results at energies above 30 MeV and to scintillator results below 1 MeV. It appears to be a combination of nuclear gamma ray lines superimposed on a bremsstrahlung spectrum with a power law (1.3±.7) × 10−3 E(1.7±.2). The 12C* line at 4.4 MeV appears to be present with a significance of about 16σ. The flux in the line is (6±3) × 10−4photons cm−2s−1rad−1. The oxygen line at 6.1 MeV does not seem to appear significantly above background.  相似文献   

19.
This paper describes one of the sources of the data concerning the thermal structure of the Martian atmosphere, based on the thermal IR spectrometry method. It allows to investigate the Martian atmosphere below 55 km by retrieving the temperature profiles from the 15 μm CO2 band. This approach enables to reach the vertical resolution of several kilometers and the temperature accuracy of several Kelvins. An aerosol abundance, which influences the temperature profile, is obtained from the continuum of the same spectrum parallel with the temperature profile and is taken into account in the temperature retrieval procedure in a self consistent way. Although this method has the limited vertical resolution, it possesses a significant advantage: the thermal IR spectrometry allows to monitor the temperature profiles with a good coverage both in space and local time. The Planetary Fourier spectrometer on board of Mars Express has the spectral range from 250 to 8000 cm−1 and a high spectral resolution of about 2 cm−1. Vertical temperature profiles retrieval is one of the main scientific goals of the experiment. The important data are expected to be obtained on the vertical thermal structure of the atmosphere, and its dependence on latitude, longitude, season, local time, clouds and dust loadings. These results should give a significant input in the future MIRA, being included in the Chapter “Structure of the atmosphere from the surface to 100 km”.  相似文献   

20.
The COMPTEL experiment on the Compton Gamma-Ray Observatory is designed to image celestial gamma radiation in the energy range from 0.75–30 MeV within a field of view of 1 steradian. It can locate stronger point sources with an accuracy better than 0.5° and is capable of mapping diffuse emission as well. The Galactic-center region was observed by COMPTEL for several 2-week periods in 1991/1992. These observations show evidence for 1.8 MeV line emission along the Galactic disk (attributed to radioactive 26Al), extending over at least 40 degrees in longitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号