首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloudiness modulates the radiation budget at the top of the Earth-atmosphere system. For radiation balance studies, for climate diagnostic studies, and for climate modeling studies, it is important to know the sensitivity of both the outgoing longwave radiation and the net (absorbed solar minus outgoing longwave) radiation of the system to changes in cloudiness on a global basis. Based on a 45 month series of NOAA satellite scanning radiometer observations, estimates of the global distribution of these sensitivity parameters are obtained.  相似文献   

2.
Radiative cooling in the mesosphere and lower thermosphere is predominantly from 15-μm emissions of CO2. Above t 120 km, complete NLTE cooling from NO becomes more important. Above 100 km, both the CO2 and the NO cooling are proportional to concentrations of atomic oxygen which are dynamically controlled and poorly characterized by observations. Furthermore, the rate for energy exchange between O and CO2(ν2 = 1) is very poorly known. CO2 is close to LTE throughout the mesosphere, but small departures from LTE between 65 and 80 km may be important for questions of remote sensing. Remote sensing for trace gases, e.g., O3 and H2O, must consider NLTE effects in the mesosphere. A global mean column model for aeronomy processes above 65 km gives a reasonable agreement with observed temperatures, suggesting that radiative balance may be possible without the need for including eddy cooling or gravity wave heating.  相似文献   

3.
At the estimation of the sensitivity three variable parameters must be taken into account: cloud amount, cloud albedo and cloud-top height. Cloud albedo is considered to be a parameter that varies according to a given formula. The effective cloud amount and outgoing longwave flux from cloudy atmosphere have been computed on the basis of the satellite measured planetary albedo and the outgoing flux data, using additional information about planetary albedo and the outgoing longwave flux in clear-sky conditions. The latter quantities have been computed from the mean contemporary climatic data. The estimation of the sensitivity is carried out in two cases: if the effective cloud amount and cloud-top height variations are independent or not. The corresponding statistical tests are presented.  相似文献   

4.
A numerical 2-D zonally averaged dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2, CH4, and N2O in the recovery of the Earth’s ozone layer after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. A weakness in efficiencies of all catalytic cycles of the ozone destruction due to cooling of the stratosphere caused by greenhouse gases is shown to be a dominant mechanism of the impact of the greenhouse gases on the ozone layer. Numerical experiments show that the total ozone changes caused by greenhouse gases will be comparable in absolute value with the changes due to chlorine and bromine species in the middle of the 21st century. Continuous anthropogenic growth of CO2 will lead to a significantly faster recovery of the ozone layer. In this case, the global total ozone in the latitude range from 60°S to 60°N will reach its undisturbed level of 1980 by about 2040. If the CO2 growth stops, the global total ozone will reach this level only by the end of the century.  相似文献   

5.
Our current knowledge on the composition of the Venus atmosphere in the altitude range from the surface to 100 km is compiled. Gases that have been measured, and whose mixing ratios are assumed to be constant with altitude, are CO2, N2, He, Ne, Ar, and Kr. Gases that have been identified in the lower and/or middle atmosphere, but whose mixing ratios may depend on altitude, latitude and/or local time, are CO, H2O, HCl, HF, and SO2. Conflicting data or only upper limits exist on some important trace gases, such as O2, H2, and Cl2. The latter two are key constituents in the photochemistry of the middle atmosphere of Venus. The chapter concludes with a listing of the isotopic abundances of elements measured in the Venus atmosphere.  相似文献   

6.
The LIMS experiment was launched on the Nimbus 7 satellite for the purpose of sounding the vertical structure of temperature and key upper atmosphere trace gases on a global scale. The technique of thermal infrared limb sounding was used to obtain measurements of O3, H2O, NO2, and HNO3. LIMS collected data almost continuously from late October to late May over the latitude range from 64°S to 84°N. Two of the gases, NO2 and HNO3, are important elements in the NOx chain of chemical reactions leading to ozone destruction. We will describe results for these gases in terms of zonal mean profiles and latitudinal distributions. The period selected for study is January–May 1979, when a major stratospheric warming occurred.  相似文献   

7.
Numerical models of the thermal budget of the Earth's upper atmosphere in the height range of 90–500km are developed. The main sources and sinks of energy including infra-red radiative cooling by vibrational-rotational bands of NO, CO2, OH and O3 as well as heating and cooling arising from dissipation of turbulent energy and eddy heat transport are taken into account. The calculated temperature and density height profiles are in good agreement with the respective profiles from CIRA 72 and Jacchia 1977 models. It is shown for the models considered that IR-radiative cooling by CO2 and NO in the 15μ and 5.3μ bands, not eddy turbulence provides the major loss of heat from 90 to 180km.  相似文献   

8.
The U.S. Air Force Real Time Nephanalysis (RT NEPH) is incorporated into the NMC Medium Range Forecast Model (MRF) to explore the impact of cloudiness on the model's radiation parameterization. After transfering to MRF model coordinate, RT NEPH is in qualitative agreement with ERBE Scene ID. The zero-hour “forecast” of outgoing longwave radiation (OLR) of 00GMT Nov. 9, 1984 is compared with that derived from NOAA AVHRR observation and the preliminary ERBE result. The comparison shows that the greater difference in OLR are from cloudy sky regions, in spite of qualitative agreement on the structures. The result suggests that for proper simulation of OLR, a refinement of the model cloud parameterization or nephanalysis on the prescribed data would be more effective than on radiative transfer scheme.  相似文献   

9.
Two procedure are presented for quantitative estimation of cloud cover (N), type of clouds (C), as well as base of clouds (Cb) and top of clouds (Ct) by using radiosonde data as well as satellite cloud pictures and radiation data. The data obtained in this way can be used as input data in the model for the estimation of the vertical profile of longwave radiative cooling.  相似文献   

10.
Components of the earth radiation budget have been calculated on a regular basis since June 1974 (except for a 10 month gap in data in 1978) based on measurements by the scanning radiometers and the advanced very high resolution radiometers on the operational NOAA polar orbiting satellites. A new base set of monthly and seasonal averages of outgoing longwave radiation has been prepared by NOAA's Climate Analysis Center (CAC) for the entire period of record through November 1983. Anomalies relative to these new normals have now been constructed for each month and season in the entire record.In this presentation, some of the more prominent anomalies of outgoing longwave radiation over the past decade are discussed. A major concentration is on the tropics and subtropics where there have been very substantial radiation variations associated with major shifts in convective cloudiness accompanying El Niño/Southern Oscillation events.  相似文献   

11.
12.
We present the results of a study of anomalies, which are defined as differences of seasonal means from the data set seasonal means, in the Earth's radiation budget from the analysis of nine years of ten day mean observations derived from the NOAA polar orbiter satellites for the period, 1974–1983. We estimate that the standard deviation in the outgoing longwave flux for this period is less than 12 Wm?2 and typically 7 Wm?2. The results show that there are several geographical areas for which the standard deviation is in excess of 20 Wm?2; in such regions the radiation budget anomalies exceeded these due to natural atmospheric variability. In this paper we discuss the relationship of these anomalies with climatic change.  相似文献   

13.
Statistical mid-latitude models of altitude distribution of temperature, water vapor, ozone, carbon dioxide and trace gases (CO, CH4, N2O, NO, NO2) are considered. The mean characteristics of altitude profiles of these parameters, as well as their time and space variability, have been taken into account. The statistical regional models were constructed using a temperature-humidy complex. The considered statistical mid-latitude models have been constructed as applied to solutions of the problems on remote sounding of the atmosphere and underlying surface from outer space.  相似文献   

14.
In this paper, the shortwave and longwave anisotropy for clear sky Indian desert scene has been estimated using long-term surface data, radiative transfer calculations and Helmholtz reciprocity for missing values. This study is important in the perspective of the low inclination satellites like Megha–Tropiques (MT) mission, carrying Scanner for Radiation Budget (ScaRaB) payload, which will provide broadband radiative fluxes at the top of the atmosphere (TOA). Due to low inclination angle, the angular models for clear sky land scenes for the MT-ScaRaB orbits will be dominated by desert points.The Angular Distribution Models (ADMs) determined in this study were compared with existing desert models. It is observed that for longwave radiation, the largest disagreement is observed for higher values of viewing zenith angle, especially for the summer season, where the difference in flux can reach up to 13 W/m2. For the shortwave radiation, higher values of both solar zenith angle and viewing zenith angle cause largest incongruity in the computed albedo from the different models, suggesting the need of caution in interpretation of the flux computations from these bins. In fact at the higher solar zenith angle bin, the disparity in albedo can go up to 6.4%.  相似文献   

15.
There are extensive reports of ionospheric disturbances before the great 2008 Wenchuan earthquake, which are possibly explained by seismogenic electric field hypotheses linked with the aerosols injected in atmosphere. This paper attempts to investigate the possible change of atmospheric aerosol optical depth (AOD) associated with this earthquake by using MODIS data from both Terra and Aqua satellites. The result shows a clear enhancement of AOD along the Longmenshan faults 7 days before the quake, which is 1 day and 4 days earlier than the reported negative and positive ionospheric disturbances, respectively, and is 1 day earlier than or quasi-synchronism with other reported atmospheric anomalies including air temperature, outgoing longwave radiation and relative humidity. Particularly, the spatial distribution of AOD enhancement is very local and it is correlated well with the active faults and surface ruptures. We suggest that this unique enhancement could be associated with the Lithosphere–Atmosphere–Ionosphere coupling process during the preparation of the Wenchuan earthquake.  相似文献   

16.
The Clouds and Earth Radiant Energy System (CERES) project’s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers.  相似文献   

17.
为模拟行星大气在微波elax-elax亚毫米波波段的辐射传输特性,利用逐线积分方法计算行星大气中各气体成分在1~3000GHz的吸收系数.基于HITRAN数据库中各气体分子的跃迁频率及线强等参数,有效模拟了各气体分子在此频段内的吸收特征,并与常用的微波elax-elax亚毫米波大气辐射传输模式进行对比.分析地球大气的组成及特性,利用辐射传输方程模拟临边探测方式下不同频段的大气辐射亮温.研究结果可为后续地球乃至行星大气成分探测模拟、频带选择以及大气成分廓线反演提供模型及理论依据.   相似文献   

18.
Understanding the balance between incoming radiation from the Sun and outgoing radiation from Earth is of critical importance in the study of climate change on Earth. As the only natural satellite of Earth, the Moon is a unique platform for the study of the disk-wide radiation budget of Earth. There are no complications from atmosphere, hydrosphere, or biosphere on the Moon. The nearside of the Moon allows for a focus on the solar radiation during its daytime, and on terrestrial radiation during its nighttime. Additionally, lunar regolith temperature is an amplifier of the terrestrial radiation signal because lunar temperature is proportional to the fourth square root of radiation as such is much more sensitive to the weak terrestrial radiation in nighttime than the strong solar radiation in daytime. Indeed, the long-term lunar surface temperature time series obtained inadvertently by the Heat Flow Experiment at the Apollo 15 landing site three decades ago may be the first important observation from deep space of both incoming and outgoing radiation of the terrestrial climate system. A revisit of the lunar surface temperature time series reveals distinct characteristics in lunar surface daytime and nighttime temperature variations, governed respectively by solar and terrestrial radiation.  相似文献   

19.
The paper considers the importance of trace gases in modulating the fluxes of solar and terrestrial radiation in the Earth's atmosphere, and the influence of these effects on the long-term climate. Present and future capabilities for observing and monitoring trace gases from spacecraft are surveyed.  相似文献   

20.
The planetary outgoing longwave radiation has been estimated since 1974 from two different series of NOAA operational polar spacecraft. The first series provided data from June 1974 through February 1978 and was designated “SR” for the scaning radiometers used at that time. This data set has been used in a variety of radiation budget and climate studies, such as that by Ohring and Gruber, 1983. The second satellite system is the currently operational TIROS-N series of satellites. Data from this series began in January 1979 and are continuing. In both systems, estimates of the outgoing longwave radiation are obtained from narrow spectral interval (10–12 μm) window radiances. A comparison is made of the estimates from the two different series of satellites in order to arrive at an assessment of their compatibility. This is important since the SR observations were taken at approximately 0900 and 2100 local times, while the TIROS-N data alternate between 0730-1930 and 0300-1500 local times. In addition, there is a period of overlap between the TIROS-N data and the broad band (5–50 μm) Nimbus 7 EArth radiation budget data. A comparison of those two data sets indiciate excellent agreement generally within about 1–2 Wm?2 on the monthly means on global and hemispherical scales. Comparisons of zonal averages indicate maximum differences as large as 9 Wm?2.Evidence is presented to suggest that observations taken at different local observing times may be biased by the diurnal variation of emitted flux, even on global scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号