首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Between 3.4 and 4.0 AU the dust detection system aboard the Ulysses spacecraft showed an increase in detection rate for particles with masses greater than 5 × 10−13 g. The spacecraft meteoroid encounter geometry indicates highly eccentric orbits detected near aphelion. The outer limit of the enhanced flux is imposed as meteoroids on such orbits move outside the aperture of the dust detector. The inner edge of the enhanced flux would be consistent with the aphelion distance acquired by 50-200 μm particles evolving for 10-20 kyr under Poynting-Robertson drag from an Encke type orbit. We propose such meteoroids provide a source population from which collisional fragmentation produces particles in the mass range to which the Ulysses detector is sensitive. Daughter fragments produced away from the aphelia of the parent orbits, a 2.2 AU, e 0.85, enter hyperbolic orbits which are not evident in the Ulysses data. The spatial density of fragments from collisions very near aphelion drops off rapidly as they evolve inward under Poynting-Robertson drag while collisions closer to 3.4 AU leave the subsequent peak density outside that radius for a significant fraction of the fragment's subsequent lifetime. The rapid orbital evolution for these collision fragments implies a recent breakup and probably a large reservoir of parent meteoroids.  相似文献   

2.
Cometary dust trails were first observed by IRAS; they are widely known to be the origins of meteoric showers. A new window has been opened for the study of dust trails, using ground-based observations. We succeeded in obtaining direct images of the 22P/Kopff dust trail with the Kiso 1.05-m Schmidt telescope. Following this initial success, we have continued to perform a dust trail survey at Kiso. As a result of this survey, we have detected dust trails along the orbit of six periodic comets, between February 2002 and March 2004. The optical depth of these dust trails are 10−9 to 10−8, which is consistent with IRAS measurements. In this paper, we describe the observations and data reduction procedures, and report the brief result obtained between February 2002 and March 2004.  相似文献   

3.
Secular variations in the absolute brightness of short-period comets were derived on the basis of their maximum apparent magnitudes in individual returns. The present paper deals with all the comets of Jupiter family observed by 31 Dec 1987 in three returns at least. P/Encke, investigated in detail by many authors /1–3/, has not been included. The sample contains 405 observed returns of 61 short-period comets. Relations of the secular fading to the orbital period, perihelion distance and also to the numerical eccentricity were found. Two independent methods of determination of aging of short-period comets, i.e. the secular fading and nongravitational parameters, are compared. The distribution of the values of the secular decreases of brightness is not in agreement with the trends in nongravitational effects. More probably, the observed secular decrease is connected with the apparent magnitude of the comet and with the influence of instrumental effects upon it.  相似文献   

4.
Solar wind particles, especially H, C, N, O, S, and P-ions, may undergo specific chemical reactions with gaseous or solid matter of comets when in the energy region of a few 10 to some eV. Each component of the solar wind, even if not chemically reactive itself, creates a multiplicity of energetic secondary particles by knock-on processes with the cometary matter. These are responsible for the majority of the so called “hot” chemical processes. Endothermic reactions with high activation energy and atom molecule interactions are possible and may add to the classical exothermic ion-molecule or radical reactions. Other sources of hot atoms or ions in comets are: cosmic rays, acceleration or pick-up processes and turbulences in comae and gas or dust tails, and photon absorption induced dissociation. The products of hot chemical reactions, short period comets experience on their orbits, add to those formed in the individual component ice or dust grains by strong fluxes of energetic particles in times prior to the accretion to a comet.  相似文献   

5.
A comet nucleus considered as an aggregate of interstellar dust would produce a mist of very finely divided (radius ~ 0.01 μm) particles of carbon and metal oxides accompanying the larger dust grains. These small particles which are very abundant in the interstellar dust size spectrum would provide substantial physical effects because of their large surface area. They may show up strongly in particle detectors on the Halley probes. A strong basis for serious consideration of these particles comes from the other evidence that interstellar dust grains are the building blocks of comets; e.g. (1) the explanation of the “missing” carbon in comets; (2) The S2 molecule detection which suggests that the comet solid ice materials have been previously subjected to ultraviolet radiation (as are interstellar grains) before aggregation into the comet; (3) the predicted dust to gas ratio.  相似文献   

6.
Molecular elemental and isotopic abundances of comets provide sensitive diagnostics for models of the primitive solar nebula. New measurements of the N2, NH and NH2 abundances in comets together with the in situ Giotto mass spectrometer and dust analyzer data provide new constraints for models of the comet forming environment in the solar nebula. An inventory of nitrogen-containing species in comet Halley indicates that NH3 and CN are the dominant N carriers observed in the coma gas. The elemental nitrogen abundance in the gas component of the coma is found to be depleted by a factor approximately 75 relative to the solar photosphere. Combined with the Giotto dust analyzer results for the coma dust component, we find for comet Halley Ngas + dust approximately 1/6 the solar value. The measurement of the CN carbon isotope ratio from the bulk coma gas and dust in comet Halley indicates a significantly lower value, 12C/13C = 65 +/- 9 than the solar system value of 89 +/- 2. Because the dominant CN carrier species in comets remains unidentified, it is not yet possible to attribute the low isotope ratio predominantly to the bulk gas or dust components. The large chemical and isotopic inhomogeneities discovered in the Halley dust particles on 1 mu scales are indicative of preserved circumstellar grains which survived processing in the interstellar clouds, and may be related to the presolar silicon carbide, diamond and graphite grains recently discovered in carbonaceous chondrites. Less than 0.1% of the bulk mass in the primitive meteorites studied consists of these cosmically important grains. A larger mass fraction (approximately 5%) of chemically heterogeneous organic grains is found in the nucleus of comet Halley. The isotopic anomalies discovered in the PUMA 1 Giotto data in comet Halley are probably also attributable to preserved circumstellar grains. Thus the extent of grain processing in the interstellar environment is much less than predicted by interstellar grain models, and a significant fraction of comet nuclei (approximately 5%) may be in the form of preserved circumstellar matter. Comet nuclei probably formed in much more benign environments than primitive meteorites.  相似文献   

7.
A set of nominal model parameters for P/Halley is derived from its light curve and spectra. In those cases where Halley observations are not sufficient, the average value derived from a large set of other comets has been used, or data from comet Bennett, Halley's best analogue has been taken. The derived parameters include nucleus mass, size, density, albedo, rotation period, axial inclination, and surface temperature, the composition of the parent molecules, the total gas and dust production rates, distributions for the dust size and bulk density as well as various other parameters.  相似文献   

8.
One of the interesting arguments for a space impact mission to asteroid 3200 Phaethon is to create an artificial Geminid meteor shower. In this work we investigate the artificial shower’s dates of observability and dependence on ejecta velocity using dust trail theory. We find that when the dust ejecta velocities are 200 m/s the artificial meteor showers start to be visible in 2204 and continue for about 30 years. If the dust ejecta velocity is 20 m/s they only last 10 years from 2215 to 2225. Thus, the onset of artificial shower activity begins sooner and lasts longer with higher ejecta velocities. To produce an artificial meteor shower with 3200 Phaethon as the parent will require higher impact energy than the Deep Impact spacecraft delivered to 9P/Tempel 1.  相似文献   

9.
A preliminary analysis of infrared observations of comets P/Crommelin and P/Tempel 1 is presented. Comet P/Crommelin was observed from UKIRT over the range 1–20 micron, using standard filters. From the shape of the thermal emission spectrum, the temperature of the dust grains is estimated (T = 314 ± 3344K) and also the dust production rate (1.3 × 105gs?1). Comet P/Tempel 1 was observed with the Infrared Astronomical Satellite (IRAS). The emission is found to be considerably extended and there is also evidence for temperature variation of the dust grains as indicated by the 12 to 25 micron flux ratio.  相似文献   

10.
A better understanding of cometary dust optical properties has been derived from extensive observations of comet Halley, complemented by other cometary observations at large phase angles and/or in the infrared. Also, further analysis of IRAS observations and improvements in inversion techniques for zodiacal light have led to some progress in our knowledge of interplanetary dust.

Synthetic curves for phase angle dependence of intensity and polarization are presented, together with typical albedo values. The results obtained for interplanetary dust are quite reminiscent of those found for comets. However, the heterogeneity of the interplanetary dust cloud is demonstrated by the radial dependence of its local polarization and albedo; these parameters are also found to vary with inclination of the dust grains' orbits with respect to the ecliptic. Such results suggest drastic alterations with temperature in the texture of cometary dust, and would favor an important asteroidal component in the zodiacal cloud.  相似文献   


11.
The properties of dust ejecta from Comet Halley are studied on the basis of (a) evidence from the comet's past apparitions and (b) analogy with recent, physically similar comets. Specifically discussed are the light curve and spectrum, discrete phenomena in the head, the physical properties of the nucleus (size, albedo, rotation, surface temperature, and morphology), and an interaction between the nucleus and dust atmosphere. Also reviewed are constraints on the size and mass distributions of dust particles, information on submicron-size and submillimeter-size grains from the comet's dust tail and antitail, and the apparent existence of more than one particle type. Similarities between the jet patterns of Halley and the parent comet of the Perseid meteor stream are depicted, and effects of the surface heterogeneity (discrete active regions) on the dust flow are assessed. Current dust models for Halley are summarized and the existence of short-term variations in the dust content in the comet's atmosphere is suggested.  相似文献   

12.
The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star.  相似文献   

13.
Images obtained by the Miniature Integrated Camera and Imaging Spectrometer (MICAS) experiment onboard the Deep Space 1 spacecraft which encountered comet 19P/Borrelly on September 22nd 2001 show a dust coma dominated by jets. In particular a major collimated dust jet on the sunward side of the nucleus was observed. Our approach to analyse these features is to integrate the observed intensity in concentric envelopes around the nucleus. The same procedures has been used on the Halley Multicolour Camera images of comet 1P/Halley acquired on March 14th 1986. We are able to show that at Borrelly the dust brightness dependence as a function of radial distance is different to that of Halley. At large distances both comets show constant values as the size of the concentric envelopes increases (as one would expect for force free radial outflow). For Halley the integral decreases as one gets closer to the nucleus. Borrelly shows opposite behaviour. The main cause for Halley's intensity distribution is either high optical thickness or particle fragmentation. For Borrelly, we have constructed a simple model of the brightness distribution near the nucleus. This indicates that the influence of deviations from point source geometry is insufficient to explain the observed steepening of the intensity profile close to the nucleus. Dust acceleration or fragmentation into submicron particles appear to be required. We also estimate the dust production rate of Borrelly with respect to Halley and compare their dust to gas ratios.  相似文献   

14.
The evidence that living organisms were already extant on the earth almost 4 Gyr ago and that early bombardment by comets and asteroids created a hostile environment up to about this time has revived the question of how it was possible for prebiotic chemical evolution to have provided the necessary ingredients for life to have developed in the short intervening time. The actual bracketed available temporal space is no more than 0.5 Gyr and probably much less. Was this sufficient time for an earth-based source of the first simple organic precursor molecules to have led to the level of the prokaryotic cell? If not, then the difficulty would be resolved if the ancient earth was impregnated by organic molecular seed from outer space. Curiously, it seems that the most likely source of such seeds was the same a one of the sources of the hostile enviroment, namely the comets which bombarded the earth. With the knowledge of comets gained by the space missions it has become clear that a very large fraction of the chemical composition of comet nuclei consists of quite complex organic molecules. Furthermore it has been demonstrated that comets consist of very fluffy aggregates of interstellar dust whose chemistry derives from photoprocessing of simple ice mixtures in space. Thus, the ultimate source of organics in comets comes from the chemical evolution of interstellar dust. An important and critical justification for assuming that interstellar dust is the ultimate source of prebiotic molecular insertion on the earth is the proof that comets are extremely fluffy aggregates, which have the possibility of breaking up into finely divided fragments when the comet impacts the earth's atmosphere. In the following we will summarize the properties of interstellar dust and the chemical and morphological structure of comets indicated by the most recent interpretations of comet observations. It will be shown that the suitable condition for comets having provided abundant prebiotic molecules as well as the water in which they could have further evolved are consistent with theories of the early earth environment.  相似文献   

15.
The orbital distributions of meteoroids in interplanetary space are revised in the ESA meteoroid model to account for recently obtained observational data and to comply with the constraints due to the orbital evolution under planetary gravity and Poynting–Robertson effects. Infrared observations of the zodiacal cloud by the COBE DIRBE instrument, in situ flux measurements by the dust detectors on board Galileo and Ulysses spacecraft, and the crater size distributions on lunar rock samples retrieved by the Apollo missions are synthesized into a single model. Within the model, the orbital distributions are expanded into a sum of contributions due to a number of known sources, including the asteroid belt with the emphasis on the prominent families Themis, Koronis, Eos and Veritas, as well as comets on Jupiter-encountering orbits. An attempt to incorporate the meteor orbit database acquired by the AMOR radar is also discussed.  相似文献   

16.
The Comet Rendezvous Asteroid Flyby (CRAF) mission is the next step in the exploration of comets as well as the first of NASA's new generation of spacecraft for primitive body and outer-planet missions. If launched in September 1992, CRAF will fly by one or two asteroids en route to a rendezvous with P/Tempel 2 in December, 1996. The post-rendezvous mission profile includes: (1) a reconnaissance phase to assess the cometary environment and to determine the mass of the nucleus; (2) a nucleus observation phase, lasting over a year, with emphasis on determining the physical and chemical properties of the nucleus and the changes associated with the onset of cometary activity; and (3) a perihelion phase with emphasis on studying the nature and dynamics of the dust, gas, and plasma in the coma and tail.  相似文献   

17.
The navigation of the ESA spacecraft Giotto to its encounter with comet P/Halley on 14 March 1986 required just 10% of the fuel available. Although the spacecraft was damaged by dust impacts during its close flyby at the nucleus of P/Halley it was retargeted to return close to Earth to maintain the option to extend the mission to encounter another comet, P/Grigg-Skjellerup on 10 July 1992.

On 2 April 1986 the spacecraft was put into hibernation configuration and had been orbiting the Sun in the ecliptic with an orbital period of 10 months. On 19 February 1990 it was reactivated, spacecraft subsystems and the payload checked out to determine its health status.

On 2 July 1990 Giotto performed succesfully the first-ever Earth gravity assist manoeuvre of a spacecraft approaching the Earth from deep space and was retargeted for comet P/Grigg--Skjellerup. It was concluded that the spacecraft is ready to provide valuable data during a potential encounter with a second comet.  相似文献   


18.
Since its launch in 1978 the International Ultraviolet Explorer (IUE) satellite observatory has been used to record ultraviolet spectra of nearly two dozen comets. These observations have been applied principally to studies of the composition, chemistry and evolution of the gaseous coma and more recently, with the substantially increased data base, to comparative analyses. The observations of Comets Bowell (1982 I) and Cernis (1983?) at a heliocentric distance of ≈ 3.4 AU show these two comets to be virtually identical and pose problems for water ice vaporization models. The most significant recent result from IUE was the discovery of S2 in the Earth-approaching comet IRAS-Araki-Alcock (1983d) and the use of the S2 emission as a monitor of short-term variations in cometary activity. In early 1984, periodic comet Encke was observed for the second time by IUE, this time post-perihelion.  相似文献   

19.
MEDAC (Meteor Echo Detection and Collection) system, a product of University of Colorado, has become part of Chung-Li VHF facilities since July 12, 1989. MEDAC is installed to observe the mesospheric winds from Doppler echos returned by meteor trails in the upper atmosphere. However, the time variations in the in-phase and quadrature components of the signals can be used to derive the time history of the meteor trail formation. The meteor flight speed in the atmosphere is hence deduced. Preliminary analysis of some data taken from July 12 to July 17 of 1989 indicates that there are some “meteor” trails that could have been produced by the reentry of orbital debris into the atmosphere. The criteria of the flight speed and the ionization height are used for selecting an orbital debris trail from pools of “meteor” trails. The relative flux intensities between the reentry orbital debris flux as tentatively identified in this paper and the meteor flux is about 1 to 100.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号