首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The Solar Maximum Mission γ-ray spectrometer (GRS) has detected an intense γ-ray burst that occurred on 1984 August 5. The burst originated from a source in the constellation Hydra and lasted about 45 s. Its integral fluence
20 keV was 3 × 10−3 erg cm−2. Spectral evolution similar to other bursts detected by SMM was observed. The overall shape of the spectrum from 20 keV to 100 MeV, on timescales as short as 2 s, is relatively constant. This shape can be fitted by the sum of an exponential-type function and a power law. The spectral shape of this event may be characteristic of many γ-ray bursts. There is no evidence for narrow or broadened emission lines.  相似文献   

2.
We present here the results of a search for the soft and short Gamma-Ray Bursts (GRBs) in the data of the Hard X-Ray Burst Spectrometer (HXRBS) on the Solar Maximum Mission (SMM) that constitute a new event series discovered by Hurley /1/ and Laros /2/. Data for four events are presented, including their time profiles and spectral characteristics. In one case the instrument time resolution reveals a total burst duration of 55 ms with rise and decay times of ⩽ 5 ms.  相似文献   

3.
The observations of X-ray Nova in Musca (GRS1124-684) by two coded mask telescopes on board GRANAT observatory provided spectral data in broad 3 – 1300 keV band. During these observations, spanned over a year, the Nova was detected in a three apparently different spectral states, corresponding to different epochs of the soft X-ray light curve: (1) A spectrum with two distinct components (soft, below 8 keV and hard power law tail with slope 2.5, detected up to 300 keV). The soft emission changed gradually with characteristic decay time around 30 days, while power law component exhibited strong variability on the time scales of several hours and decreased much more slowly. (2) A soft spectrum (without hard power law tail), observed during the “kick” of the soft X-ray light curve. (3) A hard power law spectrum with slope 2.2. Thus, while the 3 – 300 keV luminosity decreased by more than order of magnitude, the source passed through all spectral states known for galactic black hole candidates (Cyg X-1, GX339-4, 1E1740.7-2942, GRS1758-258 etc.).

On January 20–21 1991, the SIGMA telescope aboard GRANAT detected a relatively narrow variable emission line near 500 keV (Fig.1,2) with net flux ≈ 6 · 10−3 phot/s/cm2, most probably related with electron-positron annihilation processes, occurring in the source /1–4/. Additional excess above power law continuum, centered around 200 keV, was found during this observation.  相似文献   


4.
We review the current status of the development of Gamma-Ray Spectrometer (GRS) for the Lunar mission SELENE. The GRS instrument will measure gamma-rays in the energy range from 100 keV to 9 MeV. The instrument is a high-purity Ge detector surrounded by BGO and plastic scintillators which are operated as an anticoincidence shield, and is cooled by a Stirling cycle cryocooler. The primary objective is to provide global maps of the lunar composition. Measurements are anticipated for Fe, Ti, U, Th, K, Si, Mg, Al, O, Ca and Na over the entire lunar surface. The abundance of water ice in the permanently shaded craters at both the lunar poles will be measured with this instrument.  相似文献   

5.
The high precision gamma-ray spectrometer (GRS) is scheduled to be launched on the lunar polar orbiter of the SELENE mission in 2007. The GRS consists of a large Ge crystal as a main detector and massive bismuth germanate crystals as an anticoincidence detector. A Stirling cryocooler was adopted in cooling the Ge detector. The flight model of SELENE GRS has been completed and an energy resolution of 3.0 keV (FWHM) at 1.332 MeV has been achieved. The spectrometer aims to observe nuclear line gamma rays emitted from the lunar surface in a wide energy range from 100 keV to 12 MeV for one year and more to obtain chemical composition on the entire lunar surface. The gamma-ray data enable us to study lunar geoscience problems including crust and mantle composition, and volatile reservoirs at polar regions.  相似文献   

6.
The Gamma Ray Spectrometer on the SMM satellite has observed solar cosmic energetic photon transients since 17 February 1980. Using the data available through 1981, new results have been obtained on ion acceleration phenomena in solar flares. It now is evident that both ion and electron acceleration can take place impulsively, simultaneously or within seconds of one another. That the impulsive acceleration process can produce ions with energies as high as GeV/nucleon is directly shown by observations of neutrons at the Earth with energies of several hundred MeV. These two facts and the relative timing of hard X-ray emissions provide new constraints on solar flare particle acceleration theory. New flare spectra have also been observed showing new nuclear γ-ray lines not previously observed from 24Mg, 20Ne and 56Fe as well as from other elements. These spectral observations provide new information on the relative abundances of the accelerated and target nuclei. Following a review of the solar data and implications for flare theories we will also give a brief review of the results obtained on nonsolar γ-ray bursts. Most such bursts have photon spectra extending to MeV energies but with little, if any, evidence for spectral features.  相似文献   

7.
Spectral measurements by the Solar Maximum Mission have been used to confirm the cyclotron lines in gamma-ray bursts reported from the Konus experiment. We present ISEE-3 data for the same burst (GB800419) during the same period of time which show no line. We discuss various problems in the analysis of scintillator spectra and point out that unfolded spectra are not necessarily unique and that the position of a data point in a deconvolved spectrum may vary depending on the assumed overall shape of the spectrum. As a result, if the analysis assumes a soft spectrum (such as optically thin thermal bremsstrahlung) an absorption feature might appear, whereas a harder spectrum (such as a Comptonized blackbody) would not require the feature. Since the continuum shape probably changes during the duration of a typical burst, the nonuniqueness of the spectral unfolding, combined with the assumption that the continuum is optically thin thermal bremsstrahlung, could give rise to spurious “absorption” features which vary on a time scale of seconds. Despite these problems, there is still some evidence for narrow spectral lines in the range 45 to 65 keV but not for the broad lines reported from the Konus experiment. Unfortunately, the range 45 to 65 keV is the most difficult spectral region to unfold.  相似文献   

8.
Sco X-1 is a low mass X-ray binary system and with the recent observations of a resolved radio jet, the source has been included in the list of galactic microquasars. The observed spectral data in the 2–20 keV energy band fits a thermal emission. Above 20 keV, a hard tail has been reported on occasions. During our continuing balloon borne X-ray survey in the 20–200 keV region using high sensitivity Large Area Scintillation counter Experiment, Sco X-1 was observed on two different occasions. Even though the total X-ray luminosity of the source was different, the spectral nature of the source did not show any variation. The presence of hard X-ray flux is unmistakable. We present the spectral and temporal data in the hard X-ray band and discuss the results in terms of geometrical characteristics of X-ray source and its observed temporal properties. We note that the jet activity is similar to the microquasars, however, the absence of the large magnitude abrupt changes in X-ray light curve compared to GRS1915 + 105 suggest that the quasar-like behaviour is at a nano scale.  相似文献   

9.
The results obtained on cosmic gamma-ray bursts over the last several years are reviewed and compared with the older “historical” results. Fine time resolution measurements of burster light curves continue to reveal structure at the millisecond and sub-millisecond level, suggesting a compact object origin. Similarly, the evolution of the low energy X-ray spectra of bursts towards shapes consistent with 1–2 keV blackbodies may be interpreted in terms of a neutron star origin, as can the continuing detection of absorption and emission features. The statistical evidence, however, argues strongly for an isotropic distribution which has been completely sampled. To reconcile this with galactic neutron stars requires the assumption that they are Population II objects. Counterpart searches have evolved to the point where they may be carried out within days of an event, and a soft X-ray source has now been detected in the error box of one recent burst.  相似文献   

10.
A strong, confirmed gamma-ray burst was observed by a background-monitoring scintillation detector on the Spacelab 2 mission. The peak of the burst was at 00:56:38 UT on August 5, 1985. The large size of the detector allowed observations up to 16 MeV with high efficiency. A high data rate provided time-resolved observations over the energy range from 60 keV to 16 MeV, limited only by counting statistics.The burst was dominated by a single peak, ∼2 s wide, with softer, lower-level emission lasting ∼20 s> after the main peak. There was no evidence for time structure less than ∼0.2 s anywhere in the burst in any energy range. These characteristics are similar to a sizeable fraction (∼25%) of burst seen in the Konus catalog and we suggest that they are distinct from the more complex, “spiky” bursts and may have a different emission mechanism.In the energy range from ∼560 keV to ∼10 meV, the burst peaks ∼0.3 s before the peak at lower energies. Radiation in the energy range ∼10 to ∼16 MeV was detected at a confidence level of >96%, about 3 s before the lower energy radiation with roughly the same pulse width. This radiation is not detected during the main part of the burst. The energy of this burst in the range above 1 MeV is a significant fraction of the total burst energy, confirming the earlier SMM results.  相似文献   

11.
The Bent Crystal Spectrometer on the NASA Solar Maximum Mission satellite provides high spectral and temporal resolution observations of the Fe Kα lines. We have analysed spectra from almost 50 solar flares that occurred during 1980. These data strongly support fluorescent excitation of photospheric iron by photons of E > 7.11 keV emitted by the hot coronal plasma produced during the flare. After comparison of the data with a model, we discuss the observed Kα line widths, estimates of the size of the emitting region, the height of the coronal source and the photospheric iron abundance.  相似文献   

12.
对50个Ha耀斑检查表明:1.有硬X射线爆发(HXRBS)的耀斑,其Ha的线宽均超过4?,HXRBS对应的Ha耀斑核(在Ha+2?处,J耀斑核/I背景≥1.15)至少有两个,它们分处于磁场正负极性区;2.Ha耀斑开始较早, Ha耀斑核(kernel)的强度峰落后HXRBS的峰(spike)数秒,峰与峰之间有很好的对应关系; 3.Ha耀斑核,当HXRBS峰值计数率大于1000时,掩盖黑子半影,峰值计数率小于200时,不掩盖黑子半影。   相似文献   

13.
The transient X-ray pulsar A0535+26 was observed on October 4, 1980 during a high level intensity outburst with a balloon borne hard X-ray detector. High statistical quality source spectra were determined up to 100 keV. Both blackbody and Wien laws fit well the data. Pulse phase spectroscopy shows variation of temperature index between 7.5 and 8.5 keV in the off source spectra and between 7.4 and 10.5 keV in the off pulse spectra. The time averaged luminosity above 30 keV is 8×1036 erg/s.  相似文献   

14.
We report on RXTE-PCA observations of SLX 1746-311 during a 100 day outburst in April 2003. We present the 3–20 keV PCA energy spectra of the source and study evolution of spectral parameters. The burst spectrum is soft with Tin 1.3 keV at the beginning of the outburst. There is a clear evidence of a hard power law component throughout the outburst. There is also an indication of a broad iron line. The source exhibits three state transitions with considerable change in the hardness ratio at low count rates. We discuss the possible scenario under which this unusual behaviour can be explained.  相似文献   

15.
This paper summarizes the activities within the Low-Energy Gamma-Ray Group of the Laboratory for High-Energy Astrophysics at the Goddard Space Flight Center that are specifically related to the development of instrumentation for gamma-ray astronomy. Three programs are described: 1) the Gamma-Ray Imaging Spectrometer (GRIS), a balloon-borne array of seven germanium detectors for high-resolution spectrographic studies of persistent gamma-ray sources, 2) the Transient Gamma-Ray Spectrometer (TGRS), a single radiatively-cooled germanium detector for the spectrographic study of gamma-ray bursts, and 3) the Rapidly Moving Telescope (RMT), a ground-based optical telescope for the detection and study of short-lived optical transients, particularly those that occur in coincidence with gamma-ray bursts.  相似文献   

16.
17.
We present six ROSAT PSPC observations of Seyfert 1 galaxies chosen to have low Galactic line-of-sight absorption (NH 1020 cm−2). As expected, it is found that all of these sources possess significantly steeper spectra below 1 keV, than that observed at higher X-ray energies. In addition we find evidence for soft X-ray spectral features, which are best parameterized as line emission at 0.63 keV in NGC7469 and 0.75 keV in ESO198-G24. We examine these results in the light of the accuracy of the PSPC spectral calibration.  相似文献   

18.
Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (1532 UT). The flare apparently occurred 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800–1400 MHz range in association with the flare. The images of the 3–6, 6–12, 12–25, and 25–50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8–30 keV range was consistent with a power law with a negative exponent of 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona.  相似文献   

19.
20.
The recent discovery of a late-1983 cluster of soft transients /1,2/ adds a new aspect to the study of gamma ray bursts. Its source is consistent with that of an isolated, > 4-year earlier event from the galactic bulge /3/. It is the third repeating series found to date with gamma-ray burst instrumentation; typical events of all three are fairly brief in duration and have energies below those typical of the harder, > 150-keV events and well above those of X-ray bursts. One may speculate that these soft repeaters form a separate population with sources in high-density (galactic or LMC) regions, given the disk and the N49 source directions for the three series.Gamma ray burst workshops and conferences of recent years are cited. Current viewpoints include a size spectrum based on peak intensity that can fit the −1.5-index power law /4/; this, consistent with the continuing isotropy of hard bursts /5/, implies the absence of any source region information. Observations of spectral evolution /6,7/ and of very high every components /8/, together with uncertainties as to the low-energy features, suggest that the understanding of hard burst spectra may be premature. Evidence for regular features in time histories has been inferred /9/; less convincing than in the soft prototype of 1979 March 5, the effects of quasi-periodic processes may be indicated instead.Since the hard, “classical” bursts and the soft repeaters may not necessarily have a great deal in common, and with no conclusive counterpart studies, the assumption that nearby neutron stars are the sources of the hard events remains plausible but unproved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号