首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR.  相似文献   

2.
A summary is presented of the present status of the NASA space infrared astronomy program. Projects described include the Infrared Astronomy Satellite (IRAS), Small Infrared Telescope on Spacelab 2 (IRT), Cosmic Background Explorer (COBE), Shuttle Infrared Telescope Facility (SIRTF), Space Telescope (ST), and the Large Deployable Reflector (LDR). The important technical developments achieved in these programs are also discussed, as well as critical needs for future missions.  相似文献   

3.
Status of solar sail technology within NASA   总被引:2,自引:0,他引:2  
In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center’s Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L’Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails – perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.  相似文献   

4.
The European Space Agency's studies of a Comet Nucleus Sample Return mission (ROSETTA) as its Planetary Cornerstone in its long-term programme 'Horizon 2000' and the Marsnet mission, a potential contribution of the Agency to an international network of surface stations on Mars, has revived the interest in the present state of Planetary Protection requirements. MARSNET was one of the four candidate missions selected in April 1991 for further Design Feasibility (Phase A) Studies. Furthermore, of all space agencies participating in planetary exploration activities only the United States National Aeronautics and Space Administration had a well established Planetary Protection Policy on Viking and other relevant planetary missions, whereas ESA is considering the feasibility and potential impact of a planetary protection policy on its Marsnet mission, within the framework of a tight budgetary envelope applicable to ESA's medium (M) class missions. This paper will discuss in general terms the impact of Planetary Protection measures, its implications for Marsnet and the issues arising from this for the implementation of the mission in ESA's scientific programme.  相似文献   

5.
The design of the International Space Station (ISS) includes payload locations that are external to the pressurized environment. These external or attached payload accommodation locations will allow direct access to the space environment at the ISS orbit and direct viewing of the earth and space. NASA sponsored payloads will have access to several different types of standard external locations; the S3 Truss Sites, the Columbus External Payload Facility (EPF), and the Japanese Experiment Module Exposed Facility (JEM-EF). As the ISS Program develops, it may also be possible to locate external payloads at the P3 Truss Sites or at non-standard locations similar to the handrail-attached payloads that were flown during the MIR Program. Earth-viewing payloads may also be located within the pressurized volume of the US Lab in the Window Observational Research Facility (WORF). Payload accommodations at each of the locations will be described, as well as transport to and retrieval from the site.  相似文献   

6.
As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost and future Mars missions. The two contrasting practical approaches to providing space life support are (1) open loop direct supply of atmosphere, water, and food, and (2) physicochemical regeneration of air and water with direct supply of food. Open loop direct supply of air and water is cost effective for short missions, but recycling oxygen and water saves costly launch mass on longer missions. Because of the short CEV mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost have a planned 10-year operational life, the Lunar Outpost life support system should be regenerative like that for ISS and it could utilize technologies similar to ISS. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, to improve reliability and incorporate lessons learned, and to take advantage of technology advances over the last 20 years. The Lunar Outpost design could also take advantage of partial gravity and lunar resources.  相似文献   

7.
In this paper we summarise the current understanding of Martian condensate and dust clouds. The paper is particularly concerned with the spatial, temporal and seasonal characteristics of the clouds. The condensate clouds are composed of water and ice particles and occasionally CO2 particles. Dust clouds are composed of material from the surface and redistributed over the planet through the weather systems. The apparent lack of annual reproductivity of these dust storms forms a major unresolved problem. We discuss in this paper the types of observations needed in future space missions, in particular the requirements for the NASA Mars Geochemical Climatology Orbiter Mission planned for the end of this decade.  相似文献   

8.
The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first planetary mission focusing on investigations of the interior of the planet and the large-scale circulation of the atmosphere. A broad consortium of national space agencies and research laboratories will implement the mission. It is managed by CNES (the French Space Agency), with other major players being FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter.  相似文献   

9.
The National Aeronautics and Space Administration (NASA) administrator has identified protection from radiation hazards as one of the two biggest problems of the agency with respect to human deep space missions. The intensity and strength of cosmic radiation in deep space makes this a 'must solve' problem for space missions. The Moon and two Earth-Moon Lagrange points near Moon are being proposed as hubs for deep space missions. The focus of this study is to identify approaches to protecting astronauts and habitats from adverse effects from space radiation both for single missions and multiple missions for career astronauts to these destinations. As the great cost of added radiation shielding is a potential limiting factor in deep space missions, reduction of mass, without compromising safety, is of paramount importance. The choice of material and selection of the crew profile play major roles in design and mission operations. Material trade studies in shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space mission's to two Earth-Moon co-linear Lagrange points (L1) between Earth and the Moon and (L2) on back side of the moon as seen from Earth, and to the Moon have been studied. It is found that, for single missions, current state-of-the-art knowledge of material provides adequate shielding. On the other hand, the choice of shield material is absolutely critical for career astronauts and revolutionary materials need to be developed for these missions. This study also provides a guide to the effectiveness of multifunctional materials in preparation for more detailed geometry studies in progress.  相似文献   

10.
Regenerative life support systems based on the use of biological material have been considered for inclusion in manned spacecraft since the early days of the United States space program. These biological life support systems are currently being developed by NASA in the Controlled Ecological Life Support System (CELSS) program. Because of the progress being achieved in the CELSS program, it is time to determine which space missions may profit from use of the developing technology. This paper presents the results of a study that was conducted to estimate where potential transportation cost savings could be anticipated by using CELSS technology for selected future manned space missions.

Six representative missions were selected for study from those included in NASA planning studies. The selected missions ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The paper presents the analytical study approach and describes the missions and systems considered, together with the benefits derived from CELSS when applicable.  相似文献   


11.
The inauguration of NASA of the position of Payload Specialists for SHUTTLE-SPACELAB flights has broken the tradition of restrictive medical physical standards in several ways: by reducing physical requirements and extensive training; by permitting the selection of older individuals and women; by selecting individuals who may fly only one or several missions and do not spend an entire career in space activities. Experience with Payload Specialists to be gained during the forthcoming SPACELAB missions, observing man in spaceflight step by step on an incremental basis, will provide valuable data for modifying the medical standards for Payload Specialists, Space Station Technicians, and Space Support Personnel who perform routine work rather than peculiar tasks. Such revisions necessarily include a modification of traditional blood pressure standards. In this paper I review the history and evolution of these standards in aeronautics and astronautics.  相似文献   

12.
Zodiacal light is examined as a “foreground noise” limiting the space photometry of faint objects. Emphasis is given to the ways of increasing the signal to noise ratio by an appropriate choice of observational epoch. In the case of the Space Telescope, predictions of average values of this ratio for the extreme faintness case V = 28 are derived from the expected performances announced by NASA and from the recent table of zodiacal brightnesses, as obtained from observations at Tenerife ([1], table 2).  相似文献   

13.
NASA's Office of Space Science is changing its approach to all its missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at NASA's role in the U.S. Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires less U.S. resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs. Our Mars exploration plans, especially the Mars Surveyor program, are a key feature of this new NASA approach to space science. The Mars Surveyor program will be affordable, engaging to the public with global and close-up images of Mars, have high scientific value, employ a distributed risk strategy (two launches per opportunity), and will use significant advanced technologies.  相似文献   

14.
Impact analysis of the transponder time delay on radio-tracking observables   总被引:1,自引:0,他引:1  
Accurate tracking of probes is one of the key points of space exploration. Range and Doppler techniques are the most commonly used. In this paper we analyze the impact of the transponder delay, i.e. the processing time between reception and re-emission of a two-way tracking link at the satellite, on tracking observables and on spacecraft orbits. We show that this term, only partially accounted for in the standard formulation of computed space observables, can actually be relevant for future missions with high nominal tracking accuracies or for the re-processing of old missions. We present several applications of our formulation to Earth flybys, the NASA GRAIL and the ESA BepiColombo missions.  相似文献   

15.
The time has come to give serious thought to the use of the International Space Station (ISS) as a space platform to advance remote sensing research in several scientific disciplines. The European scientific community has been developing instrumentation for deployment on the ISS for some time now. Recently, NASA opened competitions for scientific programs to be supported as “Missions of Opportunity” to utilize the “EXPRESS Pallet” facility on the ISS. A single EXPRESS Pallet has the capability of carrying a collection of instruments similar to the payload of a conventional satellite. A major difference between ISS and satellite programs is that the research funding will be expended on scientific instrumentation and analysis and not on a spacecraft, launch vehicle, and flight operations. As the ISS becomes fully operational, EXPRESS Pallets could be deployed in short periods of time compared to preparing a satellite program. The ability to retrieve, improve, and re-fly an instrument is important to a progressive research program. This allows the experiment to be responsive to data analysis in a timely manner and also keep pace with developing technology.  相似文献   

16.
Over that past twelve years, global long duration balloon (LDB) missions have provided scientists an observation platform that offers tremendous opportunity for accomplishing monumental science. The precedence of several years of highly successful LDB missions and the capability to recover and re-fly such instruments within a relatively short period of time has created even greater demands for serving science missions in 2004 and beyond. To address NASA’s strategic plans for more missions and longer durations, new concepts are being explored and some are currently being developed, in order to enhance the current LDB mission concept.  相似文献   

17.
Mars Sample Return (MSR) represents an important scientific goal in space exploration. Any sample return mission will be extremely challenging from a scientific, economic and technical standpoint. But equally testing, will be communicating with a public that may have a very different perception of the mission. A MSR mission will generate international publicity and it is vital that NASA acknowledge the nature and extent of public concern about the mission risks and, perhaps equally importantly, the public’s confidence in NASA’s ability to prepare for and manage these risks. This study investigated the level of trust in NASA in an Australian population sample, and whether this trust was dependent on demographic variables. Participants completed an online survey that explored their attitudes towards NASA and a MSR mission. The results suggested that people believe NASA will complete the mission successfully but have doubts as to whether NASA will be honest when communicating with the public. The most significant finding to emerge from this study was that confidence in NASA was significantly (p < 0.05) related to the respondent’s level of knowledge regarding the risks and benefits of MSR. These results have important implications for risk management and communication.  相似文献   

18.
Extended manned space missions will require regenerative life support techniques. Past U.S. manned missions used nonregenerative expendables, except for a molecular sieve-based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expendables becomes prohibitive as crew size and mission duration increase. The U.S. Space Station, scheduled to be operational in the 1990's, is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The paper uses the requirements for the Space Station to address these techniques.  相似文献   

19.
Space missions designed to completely ablate upon an uncontrolled Earth atmosphere reentry are likely to be simpler and cheaper than those designed to execute controlled reentry. This is because mission risk (unavailability) stemming from controlled reentry subsystem failure(s) is essentially eliminated. NASA has not customarily implemented Design-for-Demise meticulously. NASA has rather approached Design-for-Demise in an ad hoc manner that fails to entrench Design-for-Demise as a mission design driver. Thus, enormous demisability challenges at later formulation stages of missions aspired to be demisable are evident due to these perpetuated oversights in entrenching Design-for-Demise practices. The investigators hence propose a strategy for a consistent integration of Design-for-Demise practices in all phases of a space mission lifecycle. Secondly, an all-inclusive risk-informed, decision-making methodology referred to as Analytic Deliberative Process is proposed. This criterion facilitates in making a choice between an uncontrolled reentry demisable or controlled reentry. The authors finally conceive and synthesize Objectives Hierarchy, Attributes, and Quantitative Performance Measures of the Analytical Deliberative Process for a Design-for-Demise risk-informed decision-making process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号