共查询到18条相似文献,搜索用时 47 毫秒
1.
为了提高惯性传感器采集到的序列数据中步态识别的准确率,建立了一个激励层改进的卷积神经网络(CNN)模型。针对三轴加速度传感器对运动太过敏感导致步态周期划分不准确的问题,采用加速度传感器与弯曲度传感器组合获取人体运动信息。将CNN模型中激励层的线性整流函数(ReLU)改进为带泄露线性整流函数(Leaky ReLU),以解决遇到卷积输出数据小于0时神经元被抑制的问题,进而达到提高步态识别准确率的目的。实验结果表明:激励层优化的CNN模型在行走、上下楼和上下坡五种步态模式下识别率达到了95.79%,与未采用弯曲度传感器的改进CNN模型和未进行激励层改进的CNN模型相比,步态识别率有所提高。 相似文献
2.
航空磁探反潜作为航空反潜的重要手段,在其中发挥了重要作用。针对目前航空反潜作战中,磁干扰信号极大地影响对水下目标磁探测效果这个问题,文章先对输入信号进行预处理,并使用卷积神经网络实现对2种信号的识别。实验结果显示,卷积神经网络的方法对信号的识别率达到了85%,能够有效对信号进行准确地识别。 相似文献
3.
机组人员疲劳驾驶是引发航空事故的原因之一。现有的研究缺少将脸部信息融合的疲劳表情识别,对疲劳表情识别可有效提高疲劳驾驶识别准确率。根据卷积神经网络的基本结构,将卷积核大小为1×1的卷积层加在输入层之后,让网络深度增加、提高特征学习能力、增加输入数据的非线性表示,同时对计算量基本无负面影响,采用线性修正函数ReLU作为激励函数解决模型在训练中梯度消失问题,提出了一种改进的卷积神经网络模型。基于LFW数据集筛选出正常、说话、疲劳3种状态表情,对其进行预处理建立疲劳表情数据集。训练完成的CNN模型对自建疲劳表情数据集实验识别准确率为88.3%,平均识别时间为20ms,与传统疲劳驾驶识别方法相比具有准确率高和实时高效的优点。与未改进的卷积神经网络相比,识别准确率提高了5.02%。 相似文献
4.
为提高ZPW-2000R轨道电路诊断系统的判定准确性和运行效率,提出了一种基于卷积神经网络的轨道电路运行状态智能识别方法。首先,根据轨道电路监测数据集构建轨道电路运行状态灰度图谱,以精准表达轨道电路的运行状态,并通过图像缩放建立实验样本;其次,构建卷积神经网络模型并对轨道电路运行状态灰度图谱进行特征提取与模式识别。实验结果表明,本文提出的方法对轨道电路运行状态识别的准确率为100%,可有效识别轨道电路正向占用状态、逆向占用状态和空闲状态。 相似文献
5.
基于卷积神经网络的深度学习流场特征识别及应用进展 总被引:1,自引:1,他引:1
深度学习架构的出色性能使得机器学习在流体力学中的应用得到新的发展,可以应对流体力学中诸多问题和需求。卷积神经网络(CNN)强大的非线性映射能力以及分层提取信息特征的功能,使其成为当下流场特征研究不容忽视的工具。围绕这一研究前沿与热点问题,概述和归纳了这一研究领域的进展与成果。首先,对深度学习在流体力学中的发展以及卷积神经网络进行了简单的回顾。然后,从卷积神经网络能够识别特征出发,先后介绍了基于卷积的深度学习特征识别在流场预测、流动外形优化、流场可视化精度提升和生成对抗等应用方面的研究进展。最后,对深度学习在流场识别领域的应用进行了展望,为后续的研究提供参考。 相似文献
6.
张松兰 《西安航空技术高等专科学校学报》2023,(1):74-81
随着工业化进程的迅猛发展,产生了大量的图像信息,传统的图像识别技术难以处理如此庞大的图像数据以及满足速度和精度上的要求,大数据及深度学习技术应运而生,基于卷积神经网络的图像识别方法成为目前图像识别的主流算法。文中首先介绍了传统图像识别技术及存在的问题,引入了卷积神经网络的深度学习方法,重点说明了卷积网络中间层的结构和特点,然后介绍图像识别中经典的卷积神经网络模型及相互间的区别,最后简要综述卷积神经网络在图像识别中的应用,指出了有监督的卷积网络学习缺点及无监督学习的研究方向。 相似文献
7.
加工特征自动识别技术是智能化设计与制造的关键支撑,已有的实用性算法普遍存在学习能力差、识别范围有限和识别速度慢等共性问题。神经网络方法在计算机视觉和模式识别领域获得了巨大成功,其自学习与自适应能力和高速计算等优势也已在加工特征识别中得到初步的展现。对加工特征识别中具有应用潜力的三种不同的神经网络方法进行了研究,剖析了神经网络识别加工特征中的预处理与编码和神经网络结构设计等关键性问题,分析了不同神经网络方法的异同点,总结了当前神经网络识别加工特征的发展方向,为相关领域的研究提供一定的理论指导与技术支持。 相似文献
8.
9.
二值卷积神经网络(BNN)占用存储空间小、计算效率高,然而由于网络前向的二值量化与反向梯度的不匹配问题,使其与同结构的全精度深度卷积神经网络(CNN)之间存在较大的性能差距,影响了其在资源受限平台上的部署。至今,研究者已提出了一系列网络设计与训练方法来降低卷积神经网络在二值化过程中的性能损失,以推动二值卷积神经网络在嵌入式便携设备发展中的应用。因此,本文对二值卷积神经网络进行综述,主要从提高网络表达能力与充分挖掘网络训练潜力两大方面,给出了当前二值卷积神经网络的发展脉络与研究现状。具体而言,提高网络表达能力分为二值化量化方法设计、结构设计两方面,充分挖掘网络训练潜力分为损失函数设计与训练策略两方面。最后,对二值卷积神经网络在不同任务与硬件平台的实验情况进行了总结和技术分析,并展望了未来研究中可能面临的挑战。 相似文献
10.
11.
卷积神经网络庞大的权重参数和复杂的网络层结构,使其计算复杂度过高,所需的计算资源和存储资源也随着网络层数的增加而快速增长,难以在资源和功耗有严苛要求的机载嵌入式计算系统中部署,制约了机载嵌入式计算系统朝着高智能化发展。针对资源受限的机载嵌入式计算系统对超轻量化智能计算的需求,提出一套全流程的卷积神经网络模型优化加速方法,在对算法模型进行超轻量化处理后,通过组合加速算子搭建卷积神经网络加速器,并基于FPGA开展网络模型推理过程的功能验证。结果证明:本文搭建的加速器能够显著降低硬件资源占用率,获得良好的算法加速比,对机载嵌入式智能计算系统设计具有重要意义。 相似文献
12.
在介绍径向基函数神经网络基本原理的基础上,讨论了基于 RBF 的数字模式识别的设计及其原则,包括识别数字网络模型结构、最近聚类学习算法等问题。 相似文献
13.
14.
应用神经网络的手写体数字识别算法研究 总被引:2,自引:0,他引:2
结合程序代码论述了1个手写体数字识别程序的原理。该识别程序应用了神经网络来实现其功能,采用BP网络。主要论及了关于BP网络的3个问题:反向传播算法;提高BP网络收敛速度的算法;以及文中提出的对网络进行修剪以期能改善其推广能力的1种算法。 相似文献
15.
16.
在常规的翼型优化设计方法中,设计点处最优翼型的气动性能会在非设计点处有所恶化,因此有必要对翼型鲁棒性优化方法进行研究。提出一种基于卷积神经网络和多项式混沌方法的翼型鲁棒性设计方法,首先搭建基于卷积神经网络的气动力预测模型;其次采用多项式混沌方法对马赫数和攻角进行不确定度量化,构建翼型鲁棒性气动优化设计系统;最后对以 RAE2822 翼型为基准翼型的气动优化设计问题进行优化设计验证。结果表明:本文提出的翼型鲁棒性设计方法可行,优化后翼型的气动性能和鲁棒性气动优化设计效率在较宽的设计范围内都有所提升。 相似文献
17.
基于神经网络的滚动轴承故障包络信号的自动识别方法 总被引:3,自引:0,他引:3
介绍了一种基于神经网络的滚动轴承故障包络信号的自动识别方法。将从包络信号的时域和频域信息中提取的反映滚动轴承故障的特征信息作为BP神经网络的输入,用BP算法对该网络进行训练。利用BP神经网络的智能性来实现滚动轴承故障的智能诊断。 相似文献