首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hindlimb unloading can induce the cardiac atrophy and diminished cardiac function, however, the mechanisms responsible for which remain elusive. The chronic volume unloading of heart, which decreases the local mechanical stress, may lead to cardiac atrophy after hindlimb unloading. Many studies showed that integrin signaling, p38 MAPK, Heat shock protein 27 and cytoskeleton involved in the hypertrophic growth induced by mechanical stress. However, the mechanisms responsible for cardiac atrophy after hindlimb unloading are still unclear. In this study, we used the tail-suspended, hindlimb unloading rat model to simulate the effects of microgravity. Western blot analysis was used to detect the protein expression of Heat shock protein 27, focal adhesion kinase, p38 MAPK and their phosphorylation levels in rat cardiac muscle after 14d hindlimb unloading. The results showed that the phosphorylation levels of both Heat shock protein 27 and p38 MAPK were decreased significantly in rat cardiac muscle after hindlimb unloading. However, the phosphorylation level of focal adhesion kinase was not decreased significantly. The results suggested that Heat shock protein 27, the downstream of p38 MAPK, might play a critical role in the cardiac atrophy in response to simulated microgravity induced by hindlimb unloading.  相似文献   

2.
Our current understanding of hypogravity-induced atrophy of skeletal muscles is based primarily on studies comparing pre- and post-flight properties of muscles. Interpretations are necessarily qualified by the assumption that the stress of reentry and readjustment to terrestrial gravity do not alter the parameters being analyzed. The neuromuscular system is highly responsive to changes in functional demands and capable of rapid adaptation, making this assumption questionable. A reexamination of the changes in the connective tissue and synaptic terminals of soleus muscles from rats orbited in biosatellites and sampled postflight indicates that these structural alterations represent adaptative responses of the atrophic muscles to the increased workload of returning to 1 G, rather than hypogravity per se. The atrophy of weightlessness is postulated to result because muscles are both underloaded and used less often. Proper testing of this hypothesis requires quantitation of muscle function by monitoring electromyography, force output and length changes during the flight. Experiments conducted in space laboratories, like those being developed for the Space Shuttle, will avoid the complications of reentry before tissue sampling and allow time course atudies of the rate of development of adaptive changes to zero gravity. Another area of great importance for future studies of muscle atrophy is inflight measurement of plasma levels of hormones and tissue receptor levels. Glucocorticoids, thyroid hormone and insulin exert dramatic regulatory influences on muscle structure. Prevention of neuromuscular atrophy becomes increasingly more important as spaceflights increase in duration. Definition of the atrophic mechanism is essential to developing means of preventing neuromuscular atrophy.  相似文献   

3.
The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles.  相似文献   

4.
We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.  相似文献   

5.
The "slow" antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension ("simulated" microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.  相似文献   

6.
Experiments have been performed in skeletal muscle fibres from the lateral head of gastrocnemius muscle of female rats. Changes in intramuscular calcium movements due to microgravity conditions have been tested by tension measurements in chemically skinned muscle fibres. Our results show that microgravity induces i) a decrease in maximal muscle strength developed by contractile proteins ii) a decrease of intensity and rate of both Ca release and Ca uptake by the sarcoplasmic reticulum.  相似文献   

7.
Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspended SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspension. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted in a similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modifications observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.  相似文献   

8.
Effects of microgravity on bone and calcium homeostasis.   总被引:1,自引:0,他引:1  
Mechanical function is known to be of crucial importance for the maintenance of bone tissue. Gravity on one hand and muscular effort on the other hand are required for normal skeletal structure. It has been shown by numerous experimental studies that loss of total-body calcium, and marked skeletal changes occur in people who have flown in space. However, most of the pertinent investigations have been conducted on animal models, including rats and non-human primates, and a reasonably clear picture of bone response to spaceflight has emerged during the past few years. Osteopenia induced by microgravity was found to be associated with reduction in both cortical and trabecular bone formation, alteration in mineralization patterns and disorganization of collagen, and non-collagenous protein metabolism. Recently, cell-culture techniques have offered a direct approach of altered gravity effects at the osteoblastic-cell level. But the fundamental mechanisms by which bone and calcium are lost during spaceflight are not yet fully known. Infrequency and high financial cost of flights have created the necessity to develop on-Earth models designed to mimic weightlessness effects. Antiorthostatic suspension devices are now commonly used to obtain hindlimb unloading in rats, with skeletal effects similar to those observed after spaceflight. Therefore, actual and "simulated" spaceflights, with investigations conducted at whole body and cellular levels, are needed to elucidate pathogeny of bone loss in space, to develop effective countermeasures, and to study recovery processes of bone changes after return to Earth.  相似文献   

9.
The program of the 7-day flight of the biosatellite Cosmos-1667 launched in July 1985 included experiments on two rhesus monkeys, ten Wistar SPF rats, ten newts, Drosophila flies, maize seedlings, lettuce sprouts, and unicellular organisms - Tetrahymena. The primate study demonstrated that transition to orbital flight was accompanied by a greater excitability of the vestibular apparatus and an increased linear blood flow velocity in the common carotid artery. The rat studies showed that atrophy of antigravity muscles and osteoporosis of limb bones developed even during short-term exposure to microgravity. The experiments on other living systems revealed no microgravity effects on the cell division rate, proliferative activity of cells of regenerating tissues and organs, energy metabolism of developing insects, structure or chemical composition of higher plant seedlings.  相似文献   

10.
空间失重引起的骨代谢调节失衡是航天员遭受的最严重的危害之一.骨代谢失衡还有可能影响机体的糖脂代谢平衡.本研究利用恒河猴头低位卧床模拟失重效应实验方法,分析头低位卧床过程中恒河猴血清中骨代谢、糖脂代谢指标变化情况及其相关性.卧床组恒河猴血清中BAP在头低位卧床实验开始7天便出现了显著下降(P<0.05),血清胰岛素、高密度脂肪酸含量在7天显著下降并一直维持在较低水平,血糖含量在7天时显著下降,但在21天时明显回升.分析发现,骨钙素与血糖、皮质醇、高密度脂肪酸含量间均存在相关性,这表明头低位卧床模拟失重效应实验中骨与糖脂代谢之间存在相互调控.   相似文献   

11.
The biochemical basis underlying the effects of altered gravity on the process of nervous signal transmission is not clear. We have investigated the effect of hypergravity stress (created by centrifugation of rats at l0 g for 1 h) on the basal and stimulated release of L-[14C]glutamate (a chemical transmitter of excitatory signals) from isolated rat brain nerve terminals (synaptosomes). It has been shown that the hypergravity stress exerted a different influence on the Ca(2+)-dependent and the Ca(2+)-independent component of neurotransmitter release. The Ca(2+)-dependent L-[14C]glutamate release evoked by potassium chloride was equal to 14.4 +/- 0.7% of total synaptosomal label for control animals and 6.2 +/- 1.9% for animals, exposed to hypergravity (P < or = 0.05) and was more than twice decreased as a result of the hypergravity stress. We observed no statistically significant difference in the Ca(2+)-independent component of L-[14C]glutamate release. For control group and animals exposed to the hypergravity stress it was equal to 7.7 +/- 2.8% and 12.9 +/- 2.0%, respectively. We have also investigated the effect of the hypergravity stress on the activity of high-affinity Na(+)-dependent glutamate transporters. Km and Vmax of L-[14C]glutamate uptake have been determined. The maximal velocity of glutamate uptake was decreased as a result of hypergravity loading, but no difference in the Km values between control rats and hypergravity exposed animals was observed. These findings indicate that hypergravity stress alters neurotransmitter reuptake and exocytotic neurotransmitter release processes.  相似文献   

12.
This research aims to characterize regulation of the principal cytosolic protein kinases in maize, cultivar 'Merit' root tips, since much evidence indicates that stimuli which modulate the gravitropic response in this system act through regulation of activity of these enzymes. To this end, we have cloned a maize protein kinase belonging to a group of plant protein kinases with a catalytic domain similar in primary structure to the second messenger-regulated protein kinases known in animal and fungal systems. However, both the unique structural features conserved among plant protein kinases in this group, and lack of evidence for cyclic nucleotide signalling in plants point to operation of a novel protein kinase regulatory mechanism in plants. In order to test effects of possible regulators on protein kinase activity, we developed a sensitive method for detecting regulation of autophosphoryl labelling of protein kinases in unfractionated maize protein extracts. Regulation of protein kinase autophosphorylation in these extracts was different from that known in animals and fungi, further suggesting operation of unique protein kinase regulatory mechanisms in plants. Previous research has shown that light, or factors modulated by light, regulate plant protein kinase activity. We found that protein kinase activity was co-immunoprecipitated with the plant photoreceptor phytochrome, and was associated with phytochrome by high-affinity chemical interactions. Far-red reversibility of red-light regulation of phytochrome phosphorylation by the associated protein kinase indicates that it may modulate or transduce the light signals which lead to gravitropic sensitivity in 'Merit' maize.  相似文献   

13.
This review surveys data in the literature and our own findings concerning the effects of weightlessness on bones and muscles of white rats flown on Cosmos biosatellites and Spacelab-3. It has been shown that the magnitude and sign of functional changes in muscles depend on their biomechanical profile. Structural and metabolic foundations of functional adaptation and its dynamics have been identified: in 5-7 day flights muscle contractility changes are mainly associated with a diminished activity of excitation-contraction coupling, in longer-term flights they are produced by changes in myosin populations specific for myofibers of different functional profile. At early flight stages (up to 1 week) osteoporosis and bone demineralization are very mild; therefore decrease in bone mechanical strength may be caused by changes in physico-chemical parameters of the collagen-crystal system. In flights of up to 3 weeks noticeable osteoporosis develops which is primarily produced by osteogenesis inhibition and which is responsible for a marked decrease of bone strength. These changes may result from uncoupling of bone resorption and remodelling processes. This uncoupling is characterized as incomplete osteogenesis and may be caused by changes in the collagen composition of the organic bone matrix. The above-mentioned adaptive changes in muscle functions of specific skeletal compartments may play a role in different responses of various bones to weightlessness.  相似文献   

14.
We have investigated the effect of microgravity during spaceflight on body-wall muscle fiber size and muscle proteins in the paramyosin mutant of Caenorhabditis elegans. Both mutant and wild-type strains were subjected to 10 days of microgravity during spaceflight and compared to ground control groups. No significant change in muscle fiber size or quantity of the protein was observed in wild-type worms; where as atrophy of body-wall muscle and an increase in thick filament proteins were observed in the paramyosin mutant unc-15(e73) animals after spaceflight. We conclude that the mutant with abnormal muscle responded to microgravity by increasing the total amount of muscle protein in order to compensate for the loss of muscle function.  相似文献   

15.
The indicators of adrenomedullary activity (catecholamine content (CA) and the activity of the catecholamine-synthesizing enzymes tyrosine hydroxylase (TH) and dopamine-β-hydroxylase (DBH)) were measured in the adrenal glands of rats living in a state of weightlessness for 18.5–19.5 days on board the biosatellites COSMOS 936 and COSMOS 1129. None of these indicators was significantly changed by space flight, neither in the group living in a state of weightlessness nor in the group living in a centrifuge on board the spacecraft and exposed to artificial gravity of 1 g (COSMOS 936). Animals exposed after space flight to repeated immobilization stress on Earth showed a significant decrease of adrenal adrenaline and an appreciable increase in adrenal TH activity compared to stressed animals which were not in space. These results suggest that a prolonged state of weightlessness during space flight does not by itself represent an intensive stressful stimulus for the adrenomedullary system but potentiates the response of cosmonauts to stress after return to Earth.  相似文献   

16.
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals.  相似文献   

17.
Chondrogenesis has a number of well-defined steps: (1) condensation, which involves cell aggregation, adhesion and communication; (2) activation of cartilage genes, which is accompanied by rounding up of the cells and intracellular differentiation; and (3) production and secretion of cartilage specific matrix molecules. Our studies show that each of these steps is affected by exposure to gravitational changes. Clinorotation and centrifugation affected initial aggregation and condensation. In the CELLS experiment, where cells were exposed to microgravity after some condensation occurred preflight, intracellular differentiation and matrix production were delayed relative to controls. Once cartilage has developed, in rats, further differentiation (hypertrophy, matrix production) was also affected by spaceflight and hind limb suspension. For the process of chondrogenesis to proceed as we know it, loading and other factors present at 1g are required at each step of the process. This requirement means that not only will skeletal development and bone healing, processes involving chondrogenesis, be altered by long term exposure to microgravity, but that continuous intervention will be necessary to correct any defects produced by altered gravity environments.  相似文献   

18.
This study investigated intracellular oxidative stress and its underlying mechanisms in a rotary cell culture system used to achieve a simulated microgravity (SMG) environment. Experiments were conducted with human breast cancer cell lines MCF-7 (an estrogen receptor (ER) α positive cell line) and MDA-MB-231 (an ERα negative cell line) encapsulated in alginate/collagen carriers. After 48 h, SMG led to oxidative stress and DNA damage in the MDA-MB-231 cells but a significant increase in mitochondrial activity and minimal DNA damage in the MCF-7 cells. The activity of superoxide dismutase (SOD) significantly increased in the MCF-7 cells and decreased in MDA-MB-231 cells in the SMG environment compared with a standard gravity control. Moreover, SMG promoted expression of ERα and protein kinase C (PKC) epsilon in MCF-7 cells treated with PKC inhibitor Gö6983. Overall, exposure to SMG increased mitochondrial activity in ERα positive cells but induced cellular oxidative damage in ERα negative cells. Thus, ERα may play an important role in protecting cells from oxidative stress damage under simulated microgravity.  相似文献   

19.
Kalman滤波器是组合导航中最常用的最优滤波工具,但是在组合导航系统中有一些应用的局限性,尤其在低成本的GPS(Global Positioning System)/DRS(Dead Reckoning System)组合导航系统中,存在着使用的GPS接收机和惯导测量元件的精度不够高的问题,要提高系统的测量精度,只能提高算法软件的先进性.为补偿卡尔曼滤波发散的缺陷,将神经网络和遗传算法组成的混合算法与卡尔曼滤波相结合,应用到GPS/DRS组合导航系统中,该算法不仅具有普通神经网络的自主学习能力、好的实时性,还克服了传统算法收敛速度慢、对学习参数敏感、局部有极小点等缺点,同时兼具卡尔曼滤波的最优估计性能.仿真结果验证了这种算法和常规卡尔曼滤波算法相比较具有更高的精度和稳定性,经过对仿真数据进行统计分析,纬度误差的最大值降低了一个数量级.  相似文献   

20.
为克服航天服关节阻尼力矩对宇航员未来太空作业、星表探测以及骨骼肌能恢复训练的影响,设计一种可应用于航天服的关节助力外骨骼方案.首先,结合航天服结构分析,研制了第一代关节助力外骨骼样机.其次,根据使用反馈对第一代外骨骼样机进行结构优化,初步确定第二代外骨骼样机的设计模型,利用有限元软件对负重状态下外骨骼样机进行静力学分析...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号