首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target tracking within military and civil fields.Here one briefly introduces the development of UAVs,and reviews its various subsystems including autopilot,ground station,mission planning and management subsystem,navigation system and so on.Furthermore,an overview is provided for advanced design methods of UAVs control system,including the linear feedback control,adaptive and nonlinear control,and intelligent control techniques.Finally,the future of UAVs flight control techniques is forecasted.  相似文献   

2.
The command tracking problem of formation flight control system(FFCS)for multiple unmanned aerial vehicles(UAVs)with sensor faults is discussed.And the objective of the addressed control problem is to design a robust fault tolerant tracking controller such that,for the disturbances and sensor faults,the closed-loop system is asymptotically stable with a given disturbance attenuation level.A robust fault tolerant tracking control scheme,combining an observer with H∞ performance,is proposed.Furthermore,it is proved that the designed controller can guarantee asymptotic stability of FFCS despite sensor faults.Finally,a simulation of two UAV formations is employed to demonstrate the effectiveness of the proposed approach.  相似文献   

3.
The tracking of orientation and angular velocity is a primary attitude control task for an on-orbit space- craft. The problem for a rigid spacecraft tracking a desired angular velocity profile is addressed using an adaptive feedback control. An angular velocity feedback tracking algorithm is firstly developed based on the precisely known attitude dynamics of the spacecraft, and the global tracking of the control algorithm is proved based on the Lya- punov analysis. An adaptation mechanism is then designed to deal with the dynamic uncertainties of the spacecraft. Such an adaptation mechanism enables the controller to track any desired angular velocity trajectories even in the presence of uncertain inertia parameters, although it does not guarantee the inertia tensor being precisely identified. To verify the effectiveness of the proposed adaptive control policy, computer simulations on dynamic equations of a spacecraft are conducted and their results are discussed.  相似文献   

4.
To analyze the existing schemes of high-speed rotorcrafts and some new technologies, a new conceptual sketch of the high-speed rotor/wing transition helicopter RD15 is proposed. The overall layout of the RD15 is given out and the transition process from the helicopter mode to the airplane mode is designed. The lift system consists of a circular disk-wing with four retractable blades. The technology of individual blade control is adopted for flight control in hover and low speed flight. The tail is a vectored thrust duct propeller. It can provide the anti-torque in hover, and offer the multi-directional controls and propulsion drive for the airplane mode flight. The aerodynamic characteristics and key technologies in the transition process for this layout, including the nose up angle of disk-wing, the length of the blade, rotation speed, pitch angle and other parameters, are theoretically ana lyzed and experimentally tested. Calculation and experiments show that the shift process of the lift, the power and controls are smooth, and the designed scheme is feasible.  相似文献   

5.
This paper focuses on the application of H_∞ preview control in automatic carrier landing system(ACLS)for carrier-based aircraft. Due to the mutual movement between aircraft and carrier,the landing process becomes considerably more challenging compared to a conventional runway landing. ACLS systems mitigate this by predicting deck motion and generating ideal glide slope path for tracking. Although,this predicted glide slope information is available in advance,conventional control structures are still unable to use this future information. H_∞ preview control has the ability to utilize this future information for improving tracking response and disturbance rejection. The process of incorporating preview information into ACLS framework and synthesizing the H_∞ preview controller is presented.The methodology is verified using the example of F/A-18 automatic carrier landing problem and results are presented.  相似文献   

6.
The aim of this work is to analyze and design a control system for vibration reduction in a rotor system using a shear mode magnetorheological fluid (MRF) damper. A dynamic model of the MRF damper-rotor system was built and simulated in Matlab/Simulink to analyze the rotor vibration characteristics and the vibration reduction dfeet of the MRF damper. Based on the numerical simulation analysis, an optimizing control strategy using pat- tern search method was proposed and designed. The control system was constructed on a test rotor bench and ex- periment validations on the effectiveness of the proposed control strategy were conducted. Experimental results show that rotor vibration caused by unbalance can be well controlled whether in resonance region (70~) or in non- resonance region (30 ~). An irregular vibration amplitude jump can be suppressed with the optimization strategy. Furthermore, it is found that the rapidity of transient response and efficiency of optimizing technique depend on the pattern search step. The presented strategies and control system can be extended to multi-span (more than two or three spans) rotor system. It provides a powerful technical support for the extension and application in target and control for shafting vibration.  相似文献   

7.
A robust repetitive control scheme is used to improve the rate smoothness of a brushless DC motor (BLDCM) driven test turntable. The method synthesizes variable structure control (VSC) laws and repetitive control (RC) laws in a complementary manner. The VSC strategy can stabilize the system and suppress uncertainties, such as the aperiodic disturbance and noises, while RC strategy can eliminate the periodic rate fluctuation in a steady state. The convergence of the repetitive learning process is also guaranteed by VSC. A general nonlinear system model is discussed. The model can be considered as an extension of BLDCMs. The stability and asymptotic position tracking performance are validated by using Lyapunov functions. Simulation results show the effectiveness of the proposed approach for improving the rate smoothness.  相似文献   

8.
A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is proposed which combines the approximation method of neural network with sliding mode control. The decentralized controller consists of an equivalent controller and an adaptive sliding mode controller. The sliding mode controller is a robust controller used to reduce the track error of the control system. The neural networks are used to approximate the unknown nonlinear functions, meanwhile the approximation errors of the neural networks are applied to the weight value updated law to improve performance of the system. Finally, an example demonstrates the availability of the decentralized control method.  相似文献   

9.
A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic inversion scheme in a quick loop and a slow loop. respectively. Then, in order to compensate the error caused by dynamic inversion, the adaptive flight control system of the armed helicopter using wavelet neural network method is put forward, so the BP wavelet neural network and the Lyapunov stable wavelet neural network are used to design the helicopter flight control system. Finally, the typical maneuver flight is simulated to demonstrate its validity and effectiveness. Result proves that the wavelet neural network has an engineering practical value and the effect of WNN is good.  相似文献   

10.
To reduce the collision shock and risk of injury to an infant in an in-car crib(or in a child safety bed)during a car crash,it is necessary to limit the force acting on the crib below a certain allowable value.To realize this objective,we propose a semi-active in-car crib system with the joint application of regular and inverted pendulum mechanisms.The crib is supported by arms similar to a pendulum,and the pendulum system itself is supported by arms similar to an inverted pendulum.In addition,the arm acting as a regular pendulum is joined with the arm acting as an inverted pendulum through a linking mechanism for simplicity,and the friction torque of the joint connecting the base and the latter arm is controlled using a brake mechanism,which enables the proposed in-car crib to gradually increase the deceleration of the crib and maintain it at around the target value.This system not only reduces the impulsive force but also transfers the force to the infant′s back using a spin control system,i.e.,the impulse force is made to act perpendicularly on the crib.The spin control system was developed in our previous work.The present work focuses on the acceleration control system.A semi-active control law with acceleration feedback is introduced using the sliding mode control theory.Especially,a feedback system of the crib acceleration relative to the vehicle is proposed for the high-vibrational environment.Further,a control experiment using scale model is conducted to confirm the effectiveness,and some results are reported.  相似文献   

11.
The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablespeed wind turbine(VSWT)driving a squirrel-cage induction generator(SCIG)connected to a grid.A new maximum power point tracking(MPPT)approach is proposed based on the extremum seeking control principles under the assumption that the wind turbine model and its parameters are poorly known.The aim is to drive the average position of the operation point close to optimality.Here the wind turbulence is used as search disturbance instead of inducing new sinusoidal search signals.The discrete Fourier transform(DFT)process of some available measures estimates the distance of operation point to optimality.The effectiveness of the proposed MPPT approach is validated under different operation conditions by numerical simulations in MATLAB/SIMULINK.The simulation results prove that the new approach can effectively suppress the vibration of system and enhance the dynamic performance of system.  相似文献   

12.
Lift on circulation control (CC) circular cylinder is calculated via numerical simulations based on 2D real- izable k-e epsilon viscous model and compared with experimental data. The simulation result shows an acceptable agreement with tested data. With the proved grid and simulation method, series of simulations are conducted to study the effect of parameters on lift. Single slotted tail booms under different clown wash velocities are optimized with the principle of generating maximum total moment around the main rotor shaft with same total power con- sumption. The results show that larger jet flow velocity, or smaller blow angle, or larger diameter of the cross section can help generating larger lift while enhancing the attachment of both the jet flow and down wash flow. Multiple slotted tail boom is better because it increases lift with same total slot width, and can increase lift by in- creasing total slot width without causing separation, also it helps generating high steady lift at a big rank of slot at- tack angles. To mount a guide vane (GV) at the exit of the slot, or shape the upper slot wall like a smooth-GV, or design the slot with an edge fillet is not recommended because it reduces the velocity of both the jet flow and the upstream of the attached downwash flow. Compared with other shapes of the slots, arcs-profiled slot performs better because of larger jet flow velocity and smaller blow angle. In order to generate the largest moment with same total power consumed by the entire NOTARTM system, total width of the slots and slot attack angle should be optimized according to velocity of down wash flow.  相似文献   

13.
The mathematical model of quadcopter-unmanned aerial vehicle(UAV)is derived by using two approaches:One is the Newton-Euler approach which is formulated using classical mechanics;and other is the Euler-Lagrange approach which describes the model in terms of kinetic(translational and rotational)and potential energy.The proposed quadcopter′s non-linear model is incorporated with aero-dynamical forces generated by air resistance,which helps aircraft to exhibits more realistic behavior while hovering.Based on the obtained model,the suitable control strategy is developed,under which two effective flight control systems are developed.Each control system is created by cascading the proportional-derivative(PD)and T-S fuzzy controllers that are equipped with six and twelve feedback signals individually respectively to ensure better tracking,stabilization,and response.Both proposed flight control designs are then implemented with the quadcopter model respectively and multitudinous simulations are conducted using MATLAB/Simulink to analyze the tracking performance of the quadcopter model at various reference inputs and trajectories.  相似文献   

14.
The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed. The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system. The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK, and simulation results of dry runway and wet runway are presented. The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93% on dry runway and 82% on wet runway respectively.  相似文献   

15.
This paper aims to obtain the thermodynamic characteristics of the air system control device sealing part in different compressor bleed air and ambient temperature. On the basis of considering the main factors affecting the heat exchange process and simplifying the physical model of the air system control device,the thermodynamic model of air system control device is established based on the basic theory of laminar flow heat transfer and heat conduction theory.Then the piston motion characteristics and the thermodynamic characteristics of the air system control device seal are simulated. The simulation results show that the valve actuation dynamic time of piston is about 0.13 s in the actual working conditions,and the temperature effect on the dynamic response of the piston rod is only 5 ms when the inlet air temperature at 300 ℃ and 370 ℃. The maximum temperature of the air system control device sealing part is not more than 290 ℃ under long time working condition of compressor air entraining. The highest temperature of the sealing part can reach up to 340 ℃ when the air flow temperature reaches the limit temperature of 370 ℃,and the longest duration working temperature limit is not more than 14 s. Therefore,the selection of control device sealing material should consider the work characteristic of instantaneous temperature limit.  相似文献   

16.
Attitude control system is one of the most important subsystems in a spacecraft.As a key actuator,the control moment gyroscope(CMG)mainly determines the performance of attitude control system.Whereas,the control accuracy and output torque smoothness of the CMG depends more on its gimbal servo system.Considering the constraints of size,mass and power consumption for a small satellite,here,a mini-CMG is designed,in which the gimbal servo system is driven by an ultrasonic motor.The good performances of the CMG are obtained by both the ultrasonic motor and the rotary inductosyn.The direct drive of gimbal improves its dynamic performance,with the output bandwidth above 20 Hz.The angular and speed closed-loop control obtains the 0.02°/s gimbal rate,and the output torque resolution better than 2×10~(-3) N·m.The ultrasonic motor provides 1.0N·m self-lock torque during power-off,with 12arc-second position accuracy.  相似文献   

17.
The primary resonance of a single-degree-of-freedom (SDOF) system subjected to a harmonic excitation is mitigated by the method of optimal time-delay feedback control. The stable regions of the time delays and feed- back gains are obtained from the stable conditions of eigenvalue equation. Attenuation ratio is applied for evaluating the performance of the vibration control by taking a proportion of peak amplitude of primary resonance for the sus- pension system with or without controllers. Taking the attenuation ratio as the objective function and the stable regions of the time delays and feedback gains as constrains, the optimal feedback gains are determined by using minimum optimal method. Finally, simulation examples are also presented.  相似文献   

18.
The airborne high power electrical equipments have been widely used in modern aircrafts, which conse- quently causes the dramatic increase of heating load up to dozens of kilowatts. Accordingly, vapor-compression re- frigeration system (VCRS) with lower engine bleed air and larger refrigeration capacity has been paid much atten- tion in recent years. Therefore, based on the analysis of the characteristics of VCRS, an experiment system of VCRS using R134a is set up to simulate operation performances. The influences of different parameters including evaporation pressure, condensing pressure, refrigerant mass flow rate and compressor rotation speed are also in- vestigated. The impacts of different parameters on the system performance are various. This work can help to es- tablish the specific control law under different work conditions.  相似文献   

19.
The fluid-structure interaction (FSI) between the canopy and flow field on the inflating and inflated conditions is investigated based on the arbitrary Lagrange-Euler (ALE) method,in both a single-and double-cruciform parachute systems.The projection area of canopy is calculated in the inflation process.The flow field characteristics and the interaction between canopies are analyzed.Results showed that,with free stream velocity of 50m/s,overinflation phenomenon would not occur during the inflation process of the double-cruciform-parachute system,because the collision and extrusion of the two canopies during inflation obstructed the oscillation of the inner gores.Concurrently,compared with the single-cruciform parachute,the vortex motion in the wake of double-cruciform-parachute is more intense.Thus the double-cruciform parachute system oscillated at a velocity of 50 m/s with an angle of less than 6.8°.By comparison,the oscillation angle of the single-cruciform parachute was within 3.5° at the velocity of 50m/s.The results are consistent with those of the wind tunnel test.  相似文献   

20.
A novel concept of neural network based control in pulse-width modulation(PWM)voltage source inverters is presented.On the one hand,the optimal switching an-gles are obtained in real time by the neural network based controller;on the other hand,the output voltage is ad-justed to fit the expected value by neural network when input voltage or loads change.The structure of neural network is simple and easy to be realized by DSP hard-ware system.No large memory used for the existing opti-mal PWM schemes is required in the system.Theoreticalanlysis of the proposed so-called sparse neural network is provided,and the stability of the system is proved.Un-der the control of neural network the error of output volt-age descends sharply,and the system outputs ac voltage with high precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号