首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The robust trajectory control of a class of nonlinear systems which can be decoupled by state-variable feedback is considered. It is assumed that the system matrices are unknown but bounded. A nonlinear control law is derived so that the tracking error in the closed-loop system is uniformly bounded and tends to a certain small neighborhood of the origin. The error dynamics are asymptotically decoupled in an approximate sense. The controller includes a reference trajectory generator and uses the integral feedback of the tracking error. On the basis of this result, a flight control system is designed for the control of roll angle, angle of attack, and sideslip in rapid, nonlinear maneuvers of aircraft. Simulation results are presented to show that large, simultaneous lateral and longitudinal maneuvers can be performed in spite of the uncertainty in the stability derivatives  相似文献   

2.
The trajectory control of aircraft in rapid, nonlinear maneuvers is discussed. Based on nonlinear invertibility theory, a control law is derived to independently control roll, pitch, and sideslip angles using rudder, elevator, and aileron. Integral feedback is introduced in order to obtain robustness in the control system to parameter uncertainty. The stability of the zero dynamics is examined. Simulation results are presented to show that in a closed-loop system, precise simultaneous lateral and longitudinal maneuvers can be performed despite the presence of uncertainty in the stability derivatives  相似文献   

3.
The author treats the question of control of a class of nonlinear systems using state variable feedback whose input/output map is nearly singular. Although the existing decoupling theory is applicable to such systems, this requires a large amount of control, which may not be permissible. A decoupling approach using state variable feedback in an approximate sense, but requiring a small control magnitude is considered. A decoupling scheme is presented that gives rise to a singularly perturbed system describing the fast dynamics of the control vector. The quasi-steady-state solution of the system gives a control law that decouples the system in an approximate way. The controller includes a servocompensator and a reference trajectory generator. Based on this result, a control law for approximate decoupling of roll angle, angle of attack, and sideslip in rapid, nonlinear airplane maneuvers is derived. Simulated responses of the closed-loop system show that large, simultaneous lateral and longitudinal maneuvers can be accurately performed in spite of uncertainty in stability derivatives  相似文献   

4.
Spacecraft and interplanetary probes orbiting at high altitudes experience forces due to solar radiation pressure, which can be used for maneuvering. The question of large angle pitch attitude maneuvers of satellites using solar radiation torque is considered. For pitch axis maneuver, two highly reflective control surfaces are used to generate radiation moment. The solar radiation moment is a complex nonlinear function of the attitude and parameters of the satellite, the orbital parameters, and the deflection angles of the reflective control surfaces. It is assumed that the parameters of the satellite model are unknown. Based on a backstepping design technique, a nonlinear adaptive control law is derived for the control of the pitch angle. In the closed-loop system, the pitch angle asymptotically tracks prescribed reference trajectories. Simulation results are presented to show that the adaptive control system accomplishes attitude control of the satellite in spite of the parameter uncertainties in the system.  相似文献   

5.
Control of a class of uncertain nonlinear systems which can be decoupled by state-variable feedback is considered. A variable-structure-control (VSC) law is derived so that in the closed-loop system the output variables asymptotically track given output trajectories in spite of any uncertainty in the system. On the basis of this result, a control law is derived for the attitude control of an orbiting spacecraft in the presence of uncertainty using reaction jets. The controlled outputs are the three Euler angles which describe the orientation of the spacecraft relative to an orbital frame. Simulation results are presented to show that, in the closed-loop system, precise attitude control is accomplished in spite of the uncertainty in the system  相似文献   

6.
In this paper, a flight control law for a simplified F-14 aircraft model is designed based on variable structure control (VSC) theory. For m-input, q-output linear uncertain systems (q相似文献   

7.
非线性解耦控制与飞机敏捷性机动   总被引:1,自引:0,他引:1  
周志强  高浩 《飞行力学》1995,13(3):37-44
首先介绍了以微分几何控制理论为基础的非线性系统解耦理论,给出了解耦控制律的综合方法及解耦闭环系统平衡点的计算方法,并对解耦系统的稳定性进行分析,随后用非线性解耦理论研究了飞机非线性运动的三种解耦运动模式,并讨论了飞机非线性解耦控制规律的线性近似解,最后用飞机非线性运动的三种解耦运动模式实现了三种形式的敏捷性机动,结果是满意的。为飞机敏捷性,直接力控制和过失速机动问题提供了一种理论研究方法。  相似文献   

8.
The question of large angle pitch attitude maneuver of satellites using solar radiation pressure is considered. For pitch axis maneuver, two highly reflective control surfaces are used to generate radiation moment. Based on dynamic feedback linearization, a nonlinear control law is derived for large pitch attitude control. In the closed-loop system, the response characteristics of the pitch angle are governed by a fourth-order linear differential equation. Robustness of control system is obtained by the integral error feedback. Simulation results are presented to show that in the closed-loop system, attitude control of the satellite is accomplished in spite of the parameter uncertainty in the system  相似文献   

9.
A model reference adaptive control law is presented for largeangle rotational maneuvers of spacecraft using reaction jets. It isassumed that the various parameters of the spacecraft arecompletely unknown, and unknown but bounded disturbancetorques are acting on the spacecraft. The controller includes adynamic system in the feedback path. Simulation results arepresented to show that fast, large angle rotational maneuvers can beperformed using the adaptive controller in spite of uncertainty inthe system.  相似文献   

10.
刚体飞行器大角度机动的反馈非线性化控制   总被引:2,自引:2,他引:0  
冯璐  龚诚  何长安 《飞行力学》1999,17(4):28-32
研究了刚体飞行器大角度的姿态控制问题,采用四元数描述刚体姿态,建立了刚体姿态运动的数学模型。基于反馈非线性化技术,通过构造李雅普诺夫函数推导出标量增益的线性控制律和矩阵增益的非线性控制律。两种控制律不需要知道系统参数,对模型误差具有鲁棒性。理论分析和仿真结果表明,所求控制律对闭环系统具有全局渐近稳定性。  相似文献   

11.
A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy.Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions.Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law.A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions.An optimal analytical along-track impulsive control strategy is then derived.Different typical orbit maneuvers,including formation establishment,reconfguration,long-distance maneuvers,and formation keeping,are taken as examples to demonstrate the performance of the proposed control laws.The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method.  相似文献   

12.
A parallel configuration using two 3-degree-of-freedom (3-DOF) spherical electromag-netic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers. First, the full dynamic equations of motion for the spacecraft system are derived by the Newton-Euler method. To facilitate computation, virtual gimbal coordinate frames are established. Second, a nonlinear control law in terms of quaternions is developed via backstepping method. The pro-posed control law compensates the coupling torques arising from the spacecraft rotation, and is robust against the external disturbances. Then, the singularity problem is analyzed. To avoid sin-gularities, a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed. The weighted matrices are carefully designed to switch the actuators and redistribute the control torques. The null motion is used to reorient the rotor away from the tilt angle saturation state. Finally, numerical simulations of rest-to-rest maneuvers are performed to validate the effec-tiveness of the proposed method.  相似文献   

13.
周志强 《航空学报》1996,17(3):354-359
给出了非线性解耦系统平衡点的计算公式。用微分几何控制理论研究了飞机非线性运动的 3种解耦运动模式,并用这 3种模式实现了 3种形式的敏捷性机动和直接升力控制的 3种基本模式,即 An,α1和α2 模式。计算结果表明,给出的 3种解耦模式能精确地实现这些运动模式。为飞机敏捷性和直接力控制问题提供了一种理论研究方法  相似文献   

14.
尾旋自动防止系统非线性解耦控制律综合方法   总被引:1,自引:0,他引:1  
李季陆  方振平 《航空学报》1996,17(3):286-291
将非线性解耦控制理论应用于飞机尾旋自动防止系统中,给出一种考虑尾旋动态特性的解耦控制律综合方法。根据某架现代战斗机的数学模型,用这种方法设计了用升降舵、副翼、方向舵对迎角、侧滑角和滚转角速度解耦的尾旋自动防止控制律。相应的闭环系统数字仿真取得了满意的效果  相似文献   

15.
An approach is presented to the control of an uncertain nonlinear flexible robot arm (PUMA-type) with three rotational joints. The third link is assumed to be elastic. A torquer control law, which is a function of the trajectory error, is derived for controlling the joint angles. The knowledge of the system dynamics is not required for the derivation of the controller. This controller includes a reference model to generate command joint angle trajectories, and a dynamic system in the feedback path which requires only joint angle and rate for feedback. The torquer controller asymptotically decouples the elastic dynamics into two subsystems, representing the transverse vibration of the elastic link in two orthogonal planes. For the damping of the elastic vibration, a force control law using modal velocity feedback is synthesized. Simulation results are presented to show that the combination of the torque and force control law accomplishes reference joint angle trajectory tracking and elastic mode stabilization despite the uncertainty in the system  相似文献   

16.
航空发动机非理想解耦自适应控制   总被引:2,自引:1,他引:1  
本文对航空发动机的双变量控制方法进行了研究, 提出了一种非理想解耦自适应控制方法, 各子系统之间部分残余的相互耦合和非线性影响就通过自适应律本身的鲁棒性来解决。仿真结果表明该控制系统实现了解耦控制, 对发动机模型参数在大范围内的变化均有良好的控制效果。   相似文献   

17.
The question of attitude control and elastic mode stabilization of a spacecraft (orbiter) with beam-tip-mass-type payloads is considered. A three-axis moment control law is derived to control the attitude of the spacecraft. The derivation of the control moments acting on the spacecraft does not require any information on the system dynamics. The control law includes a reference model and a dynamic compensator in the feedback path. For damping out the elastic motion excited by the slewing maneuver, an elastic mode stabilizer is designed. The stabilization is achieved by modal velocity feedback using force and torque actuators located at the payload end of the elastic beam. Collocated actuators and sensors provide robust stabilization. Simulation results are presented to show that rotational maneuvers and vibration stabilization can be accomplished in the closed-loop systems despite the presence of model uncertainty and disturbance torque in the system  相似文献   

18.
自主近距空战中机动动作库及其综合控制系统   总被引:6,自引:0,他引:6  
针对自主近距空战中机动动作库的设计,采用定性与定量结合的方法对机动动作进行描述,以准确体现机动动作的几何形态和战术意义,构成含描述参数的机动动作库。对于机动动作的控制,提出了按照任务控制-运动学控制-动力学控制-被控对象划分的综合控制系统多层递阶结构。其中,机动动作控制器针对每种机动动作分别设计指令生成器,生成气流角和速率指令;气流角控制器采用含指令滤波的backstepping方法进行控制律设计。以半滚倒转和高速摇摇为例进行仿真验证,仿真结果表明,机动动作的描述参数能准确体现其几何形态和战术意义,并通过综合控制系统实现有效控制。  相似文献   

19.
大机动飞机的非线性鲁棒控制律设计   总被引:1,自引:1,他引:0  
采用非线性不确定系统的高增益控制建设设计方法,为某型大机动飞机在特定飞行条件下设计了鲁棒控制律,以跟踪期望的输出轨迹,并在不同飞行条件下进行了系统仿真研究。仿真结果表明,采用所设计的控制律,在不同飞行条件下,飞机均可同时完成较精确的纵向和侧向机动跟踪,说明控制律具有较好的鲁棒性。  相似文献   

20.
挠性空间结构的旋转操纵——鲁棒控制方法   总被引:3,自引:0,他引:3  
 本文研究刚体-挠体互联的空间结构的旋转操纵,针对挠体的建模参数存在误差的情况给出控制律。为此,本文从Lyapunov稳定性理论出发推导了不定系统的鲁棒控制方法,构造了针对参数不定性,外界输入不定性的控制规律。仿真结果表明该控制规律实际有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号