首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用一步溶剂热法以RuCl3·xH2O, SeO2为前驱体,还原氧化石墨烯为载体制备了RuxSey/石墨烯催化剂,探讨了乙醇和乙二醇两种溶剂对催化剂形貌、结构以及氧还原(Oxygen reduction reaction, ORR)活性的影响,并利用透射电子显微镜(Transmission electron microscope, TEM)、X射线衍射仪(X-ray diffraction, XRD)、拉曼光谱仪(Raman)和旋转圆盘电极(Rotating disk electrode, RDE)技术表征了催化剂的物理特征和催化性能。结果表明RuxSey颗粒可以均匀地分散在石墨烯片层上,以乙二醇为溶剂制备的RuxSey/石墨烯催化剂具有良好的结晶性能,且乙二醇的存在可以促进氧化石墨烯载体的还原,增大其比表面积,使催化剂在0.1 mol/L KOH 溶液中表现出较高的氧还原活性。  相似文献   

2.
采用水热合成法,以Ce(NO3)3·6H2O为铈源,分别制备了CeO2纳米片、纳米棒和纳米管等3种不同形貌的催化剂,并对其进行了化学结构和表面性能的表征;将这些催化剂用于催化臭氧化降解废水时发现催化剂的表面形态及反应体系的控制条件对催化效率具有显著的影响,其中CeO2纳米管表现出最优良的催化活性。在CeO2纳米管用量为0.5 g,臭氧投加量为15 mg/min时催化臭氧化反应2 h后,对体积为1 L、初始TOC浓度为100 mg/L的柠檬黄溶液中的有机物矿化率高达97%,因此,纳米CeO2作为催化臭氧化技术中新型催化剂具有很大的发展前景。  相似文献   

3.
Fe3+/SO2-4/TiO2光催化氧化苯酚研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备Fe3+/SO2-4/TiO2光催化剂,以紫外光为光源,研究不同实验条件下对苯酚的光催化氧化.结果表明催化剂投加量以2~3 g/L为最佳范围;pH=6.7~9.0时苯酚去除率较高;溶液初始浓度越高,CODcr去除率越低;H2O2质量浓度为90 mg/L时,光催化效果达到最佳;Cr6+浓度为8 μg/mL时CODcr去除率达到最大,Cr6+的还原率达90%以上;Hg2+对CODcr去除率没有较大的影响,Hg2+的还原率99.5%.  相似文献   

4.
利用搅拌摩擦加工(FSP)法制备了石墨烯/铝基复合材料,通过光镜、SEM+EDS、拉曼光谱和XRD等分析手段对复合材料中石墨烯分散、损伤以及石墨烯-铝界面反应等进行了表征,研究了不同石墨烯加入量对复合材料力学性能的影响。结果表明:石墨烯/铝基复合材料的FSP制备能有效降低界面反应并促进石墨烯片层剥离,但同时也会导致石墨烯结构损伤的加剧。石墨烯在基体中的分散与其加入量密切相关,更多的石墨烯加入会导致其团聚和片层堆砌而影响复合材料的延伸率,合适的加入量可实现对铝基的同时增强增韧。  相似文献   

5.
采用溶胶-凝胶法制备Fe^3+/SO4^2-/TiO2光催化剂,以紫外光为光源,研究不同实验条件下对苯酚的光催化氧化。结果表明:催化剂投加量以2-3g/L为最佳范围;pH=6.7—9.0时苯酚去除率较高;溶液初始浓度越高。C0Dcr去除率越低;H2O2质量浓度为90mg/L时,光催化效果达到最佳;Cr^6+浓度为8μg/mL时CODcr,去除率达到最大,Cr^6+的还原率达90%以上;Hg^2+对CDDcr去除率没有较大的影响,Hg^2+的还原率99.5%。  相似文献   

6.
设计合成了新型Br/onsted酸功能化离子液体3-N,N,N-三甲铵基丙磺酸硫酸氢铵盐([TMPS].[HSO4]),其结构经IR,1HNMR,13C NMR和MS光谱确证。[TMPS].[HSO4]具有相转移催化剂四季铵盐分子结构,同时又含有酸性官能团。利用其在水相中室温条件下催化了芳香醛、酮、芳香胺的Mannich反应,产率为67%~92%,催化材料可以回收并重复使用6次,催化活性无明显变化。  相似文献   

7.
由壳聚糖与环氧丙烷制备了羟丙基壳聚糖(HCS)。将其配制成水溶液,利用离子凝胶法,与多聚磷酸钠(TPP)反应,制备了粒径在0.6μm羟丙基壳聚糖微球。再用滴定水解法制备了四氧化三铁微粒,激光粒度分析显示滴定水解法制备的Fe3O4粒径分布较窄,粒径小。在此基础上采用交联聚合法制备了Fe3O4/HCS复合微球,微球为实心,四氧化三铁微粒被包裹于微球内部,形状规则,粒径约为0.8μm,经过磁响应分析表明Fe3O4/HCS复合微球具有磁响应性。  相似文献   

8.
为了制备能够吸收更长波段光源,可以用时利用太阳光的可见光区域和红外光区域的光催化剂,以商业Cu网为模板,通过牺牲模板法制备三维非化学计量Cu_(2-x)Se/Cu光催化剂。将Cu网浸没在含有硒粉、NaOH和NaBH4的Se2-溶液中。比较不同反应时间的催化剂,2 h得到的光催化剂性能最好。Cu_(2-x)Se/Cu网在可见光和红外光区均能达到良好的响应。在红外光照射下Cu_(2-x)Se/Cu网50 min可以完全降解10 ppm甲醛。在可见光和红外光照射下Cu_(2-x)Se/Cu网40 min就能完全去除10 ppm甲醛,且10次循环实验光催化剂仍能保持高效的催化降解性能。三维的Cu_(2-x)Se/Cu网体现了优异的降解甲醛性能,并且在红外光区域的性能也十分显著。  相似文献   

9.
制备了二氧化钛负载磷钨酸催化剂H3PW12O40/TiO2。考察了H3PW12O40/TiO2对30%过氧化氢氧化环己烯合成己二酸的催化作用。实验结果表明,使用H3PW12O40/TiO2催化剂3.55g,环己烯10.5 mL,30%过氧化氢55 mL,在90℃下反应6h,己二酸产率达到55%以上。研究了H3PW12O40/TiO2用量、过氧化氢用量、反应时间对己二酸收率的影响。催化剂H3PW12O40/TiO2能重复使用。  相似文献   

10.
首先使用2-氨基乙硫醇与丙烯酸分别对氧化石墨烯(GO)与3-氨丙基三乙氧基硅烷(APTES)包覆改性的四氧化三铁(Fe_3O_4)进行修饰,接着利用巯基-烯点击化学法制备得到磁性氧化石墨烯(MGO)复合材料。通过FT-IR,XRD,SEM,TEM,VSM等表征手段对目标产物进行表征。利用所得产物做为吸附剂去除水中刚果红(CR)染料。研究了该复合材料的吸附动力学、吸附等温线及初始pH值对吸附的影响,考察了MGO对水中CR的去除效果。结果表明:pH在4.0时复合材料的吸附效果最好,吸附时间在30 min左右时达到吸附平衡,最大吸附量为321.7 mg·g~(-1)。其吸附动力学符合二级动力学模型,吸附模型符合Langmuir模型,吸附-解吸附性能较弱。  相似文献   

11.
使用TiO2/SO2-4为催化剂,催化乙酰乙酸乙酯和1,2-丙二醇反应合成苹果酯-B.结果表明:使用该催化剂1.0 g,乙酰乙酸乙酯(0.077 mol)与1,2-丙二醇摩尔比为1∶1.2,环己烷15 ml,反应2.5 h,苹果酯-B产率达73%.产品经理化检验确认.  相似文献   

12.
本研究以石墨片、碳纳米管、石墨烯和氧化石墨烯为增强碳材料,采用复压复烧法制备了质量分数为0.5%的不同碳材料/铜复合材料,并分析了各复合材料的显微组织、相对密度、显微硬度与拉伸性能。微观组织观察表明,石墨片、碳纳米管和石墨烯在复合材料中均存在团聚,而氧化石墨烯的分散性较好。纯铜及不同碳材料/铜复合材料的相对密度较高,其值均在96.74%以上。不同碳材料/铜复合材料的显微硬度均高于纯铜,除石墨/铜外,其余碳材料/铜复合材料的抗拉强度均大于纯铜,主要强化机制为细晶强化和位错强化。然而由于碳-铜的结合力较弱,所有碳材料/铜复合材料的断后伸长率均小于纯铜。综合比较发现,以氧化石墨烯为增强材料制备的还原氧化石墨烯/铜复合材料的性能最佳,其相对密度、显微硬度、抗拉强度均为最大,分别为99.04%、71.2 HV、229.22 MPa,断后伸长率达到了66.8%。  相似文献   

13.
利用3-氨基丙基三乙氧基硅烷(KH-550)和2-溴代异丁酰溴(BIB)对纳米二氧化硅进行改性制备了原子转移自由基聚合(ATRP)纳米活性中心,采用紫外光引发丙烯酸十二氟庚酯活性聚合接枝在纳米二氧化硅表面并沉积在玻璃基材表面制备了超疏水表面。通过热失重分析纳米活性中心的接枝率,采用水接触角研究了纳米活性中心含量和光聚合时间对超疏水性能的影响。结果表明:随着纳米二氧化硅活性中心浓度增加,工艺稳定性变好,但光聚合沉积形成超疏水表面所需的时间要长。纳米二氧化硅活性中心浓度为3.63μmol/g为最佳,经40 min光引发活性聚合后,二氧化硅表面含氟聚合物的接枝率达到34.12%,接触角达到164°,表面微纳结构致密。  相似文献   

14.
近年来氧氟沙星抗生素的滥用已成为日益严重的环境问题,γ辐照降解以其高效、快速、不产生二次污染等优点用于水环境中抗生素的降解。纳米氧化铈(CeO2)作为价廉且具有优异催化性能的稀土氧化物,可用于促进污染物的γ辐照降解。本文制备了纳米CeO2,以其作为催化剂辐照降解氧氟沙星,并对降解产物进行分析,探讨了CeO2对氧氟沙星(Ofloxacin, OFX)的催化降解机理。研究结果表明,分散性好、形貌规整的CeO2纳米粒子具有较好的催化效用,加入纳米CeO2后,在2 kGy的辐照剂量下降解率可达99%,明显优于未加催化剂的效果。同时通过对比发现,CeO2的催化性能优于H2O2。最后通过液 质联用(Liquid chromatography mass spectrometer, LC-MS)分析技术推断出氧氟沙星抗生 素羟基的进攻降解途径。  相似文献   

15.
采用环氧树脂对水性聚氨酯接枝,再通过γ-氨丙基三乙氧基硅烷(KH550)与石墨烯表面含氧基团反应,得到硅烷偶联剂改性的氧化石墨烯,最后使两者复配得到稳定性良好、耐蚀性能优异的氧化石墨烯/环氧改性水性聚氨酯(GO/EPWPU)乳液。研究分析了不同环氧树脂含量对水性聚氨酯涂膜物理性能和耐介质性能的影响,通过电化学方法研究了涂层的耐蚀性能和防腐蚀行为。结果表明:环氧树脂用量为7%时,涂层力学性能、耐介质性能优异;与原始样品对比发现,添加改性石墨烯明显提升了涂层的耐蚀性能,此外,当改性石墨烯用量为1‰时,涂层耐蚀性能最好,通过观察涂层浸泡腐蚀过程,进一步分析了不同石墨烯用量的环氧改性水性聚氨酯涂层的防腐蚀行为。  相似文献   

16.
一种磁载光催化剂的制备及光催化活性的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法,在磁性颗粒表面包覆T iO2,制备了易于固液分离的纳米级磁载光催化剂T iO2/S iO2/F e3O4,并通过TEM,IR,XRD等对样品进行表征。以有机污水为降解对象,研究了磁载光催化剂的光催化活性。研究结果表明,包覆S iO2有利于提高磁载光催化剂的光催化活性,光催化剂能使有机污水快速降解,5次循环使用后降解率达90%以上,且光催化剂能快速地从液相中分离回收。同时磁载光催化剂具有较高的光催化活性,对高盐污水、含酚污水的降解率分别可达到99%,86.8%,对染料污水也有良好的降解效果,并具有磁性回收的特点,应用前景广泛。  相似文献   

17.
采用氧化石墨烯(Graphene oxide,GO)与固相法制备的Li_2Ru_(0.6)Mn_(0.4)O_3复合得到Li_2Ru_(0.6)Mn_(0.4)O_3/GO复合电极材料,并利用X射线衍射(X-ray diffraction,XRD)、扫描电子显微镜(Scanning electron microscope,SEM)、透射电子显微镜(Transmission electron microscope,TEM)和能谱仪(Energy dispersive spectrometer,EDS)分别对其晶体结构、形貌进行了表征。氧化石墨烯不仅可以改善Li_2Ru_(0.6)Mn_(0.4)O_3的导电性,而且可减小其在电解液中因溶解而发生的副反应。电化学测试表明:复合后电极材料的循环性能和倍率性能得到了明显的改善,200圈以后容量依然为初始容量的87.5%;5C大倍率的充放电后,电流密度回到0.1C时,容量保持在初始容量的95%以上。  相似文献   

18.
石墨烯因具有卓越的导电性、快速的电荷迁移率、高的比表面积及良好的化学和热稳定性,石墨烯对电极应用于太阳能电池具有极高的研究价值。实验采用机械剥离法制备石墨烯,使用低温旋涂法将石墨烯溶液旋涂于FTO导电玻璃,制备出石墨烯对电极并应用于QDSCs。本研究主要对不同旋涂时间得到的不同厚层石墨烯对电极性能进行分析。随着旋涂时间的增加,石墨烯对电极交换电流密度值先增加后减小,短路电流密度Jsc以及电池效率也出现相应的先增后减变化趋势。实验证明旋涂时间为30 s时,石墨烯对电极J0达到最大,石墨烯对电极展现出了对电子空穴对较好的电活性,拟合数据显示石墨烯对电极Rct为2.049Ω·cm~2,短路电流密度Jsc增加到5.21 mA·cm~(-2),电池效率增加到1.87%达到最大。石墨烯对电极电镜测试显示旋涂时间为30 s对应石墨烯膜层厚度为2μm,石墨烯对电极性能最佳。  相似文献   

19.
采用溶液聚合制备了系列不同含氟单体结构和不同氟含量的含氟聚氨酯丙烯酸酯,并通过红外光谱(FTIR)和核磁共振氢谱(1HNMR)对其进行表征。运用X光电子能谱(XPS)研究了含氟单体的表面富集行为,并对含氟单体结构和含量对固化漆膜水接触角的影响进行了研究。优选了G06树脂进一步和SiO_2和ZrO_2无机溶胶复配制备了光固化含氟杂化涂料,对固化漆膜的摩擦系数、耐磨性进行了研究。结果表明:含氟单体的加入显著降低了固化漆膜的摩擦系数,与高硬度的无机溶胶复配显著提高了有机玻璃的耐磨性,涂覆了不含氟的有机/无机杂化涂料的有机玻璃磨耗量从2.9 mg/50转降低到0.7 mg/50转,涂覆了光固化含氟杂化涂料的磨耗值进一步降低到0.5 mg/50转。  相似文献   

20.
采用溶胶 -凝胶法制备TiO2 粉体 ,考察了它当铬离子存在时对汞离子溶液的光催化还原效果。结果表明 ,当TiO2 的用量为 2g/L、汞初始浓度为 7μg/mL时 ,光催化还原效率最高。在体系中通入N2 保护 ,还原率明显提高。用无定形TiO2 作为光催化剂 ,还原率不稳定  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号