首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
影响SiC陶瓷纤维力学性能的因素评价   总被引:6,自引:1,他引:6       下载免费PDF全文
在SiC陶瓷纤维整个制备工艺过程中,影响因素繁多而且交叉作用,每个因素的变化都对SiC纤维的力学性能产生很大影响。本文以先驱体转化法为例,针对SiC陶瓷纤维整个制备工艺过程中的四个阶段,综述了各个因素对SiC陶瓷纤维最终力学性能的影响。  相似文献   

2.
SiC陶瓷纤维先驱体的研究动态   总被引:1,自引:1,他引:1       下载免费PDF全文
对国内外SiC系列陶瓷纤维先驱体的主要合成方法及工艺进行了总结,比较了各种方法所得先驱体的产率,杂元素含量,分子形状形态,分子量及其分布等结构参数,先驱体可纺性以及对应烧成纤维的力学性能。提出降低先驱体中杂元素含量,改善其可纺性及先驱丝的强度,提高陶瓷收率是SiC系列陶瓷纤维先驱体分子设计的方向。  相似文献   

3.
低氧含量SiC纤维研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
为制备耐高温性能良好的SiC纤维,必须降低纤维中的氧含量,本文详细综述了国内外先驱体转化法制备Sic纤维中降低氧含量的方法,分析了各种方法的优缺点,比较可行有效的方法有电子束/γ射线辐射交联法、高温脱氧法和低度预氧化 热交联法,为制备高性能SiC纤维提供了一些参考。  相似文献   

4.
先驱体转化法含硼连续SiC纤维研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
含硼连续SiC纤维是很有前景的耐高温陶瓷纤维,室温拉伸强度达到3.0 GPa,耐温1 400℃以上。本文综述了国内外先驱体转化法含硼连续SiC纤维的基本性能和制备方法,并分析比较了各国含硼连续SiC纤维的性能以及制备方法的特点,进而提出制备含硼连续SiC纤维的新思路。  相似文献   

5.
采用低浓度先驱体溶液利用先驱体浸渍裂解(PIP)工艺在SiC纤维表面制备了SiC涂层,研究了浸渍裂解次数对纤维涂层形貌的影响.研究表明,采用10%的PCS先驱体溶液经3次浸渍裂解后可在纤维表面制得连续致密的SiC涂层.采用经涂层处理的SiC纤维布经热模压成型-先驱体浸渍裂解工艺制备了2D-SiCf/SiC复合材料,其弯曲强度随制备涂层浸渍裂解次数的增加先增后降,经3次浸渍裂解制备涂层的复合材料强度最高,由未经涂层处理的163.5MPa增大到245.9MPa,强度提高近50%.研究证明,SiC纤维表面SiC涂层使纤维在材料致密化过程所受的损伤减小,同时改善了界面,使复合材料强度明显提高.  相似文献   

6.
对先驱体硅树脂高温(800~1400℃)转化陶瓷接头连接石墨、SiC陶瓷及Cf/SiC复合材料进行了研究,着重对硅树脂固化裂解过程、硅树脂溶液浓度、裂解温度及惰性填料对连接性能的影响进行了探讨.研究表明,硅树脂的交联固化主要是通过消耗Si-OH来完成,先驱体溶液的浓度及裂解温度根据基材的不同而有不同影响,适当加入惰性填料SiC可以提高硅树脂对Cf/SiC复合材料的连接性能.  相似文献   

7.
碳纤维编织物中真空浸渍引入SiC微粉的工艺研究   总被引:2,自引:0,他引:2  
采用真空浸渍法在碳纤维编织物中预先引入SiC微粉,以缩短先驱体浸渍裂解制备碳纤维三维编织物(3D BCf)增强SiC陶瓷基复合材料的制备周期,考察了微粉粒度、浆料SiC/无水乙醇(EtOH)质量比等参数对引入SiC微粉体积分数的影响。结果表明,当SiC微粉粒度为 0. 4μm,浆料SiC/EtOH质量比为 1∶1和 1∶2时真空浸渍效果较佳,在碳纤维编织物中引入SiC微粉的体积分数可达 10%左右,缩短了先驱体浸渍裂解制备Cf/SiC复合材料的致密化周期,在相同浸渍裂解周期下,可提高材料的力学性能。  相似文献   

8.
以新型先驱体LPVCS(含乙烯基液态聚碳硅烷)为原料,以经CVD裂解碳(PyC)界面改性的KD-1型SiC纤维作为增强相,采用先驱体浸渍裂解工艺(PIP)制备三维编织SiC/SiC复合材料,并对其室温及1300℃弯曲性能测试表征。试验结果表明,采用LPVCS为先驱体制备SiC/SiC复合材料,降低了材料制备周期,且9个周期后材料密度达到2.14g/cm3,开孔率为10.8%。在1300℃空气环境中,SiC/SiC复合材料弯曲强度达到470.2MPa,断裂韧性达到20.7MPa·m1/2。采用扫描电镜对SiC/SiC复合材料1300℃下断口形貌进行观察,SiC纤维存在一定拔出;断口表面存在较为严重的氧化现象,这是导致材料弯曲强度降低的主要原因。  相似文献   

9.
研究了以先驱体为粘合剂制备SiC/Si3N4复相陶瓷异型件的烧成工艺,以及升温制度等对制品质量的影响。  相似文献   

10.
C/C—SiC复合材料的制备与性能   总被引:14,自引:1,他引:14       下载免费PDF全文
采用化学气相渗透(CVI)法和液相浸渍有机物先驱体混合工艺制备了C/C-SiC复合材料,并对复合材料力学性能、抗烧蚀性能和抗氧化性能进行表征。结果表明:制备的C/C-SiC复合材料在基本保证C/C复合材料力学性能的基础上,抗氧化和抗烧蚀性能得以大幅度提高,提出了制备兼具C/C复合材料与陶瓷材料的技术途径。  相似文献   

11.
C形、中空截面碳化硅纤维的成形工艺研究   总被引:4,自引:0,他引:4       下载免费PDF全文
以聚碳硅烷(PCS)为原料,经C形喷丝板熔融纺丝制备C形、中空截面PCS原丝后,再经不熔化和高温烧成后得到C形、中空截面SiC纤维。文中讨论了纺丝温度、N2压力和收丝速度对两种PCS纤维当量直径和异形度的影响,以及不熔化和烧成工艺对SiC纤维截面形状的影响。结果表明,纺丝温度对C形、中空PCS纤维当量直径和异形度影响较大;合适的纺丝工艺和不熔化及烧成条件下可以得到高异形度低当量直径的C形、中空截面SiC纤维。  相似文献   

12.
SiC纤维增强复合材料界面微观结构的Raman光谱研究   总被引:4,自引:0,他引:4  
使用Raman显微技术(Raman microscopy)研究了SiC纤维增强碳化硅、JG6玻璃和Pyerx玻璃复合材料界面的微观结构。研究表明,复合材料的制备过程使纤维内自由碳颗粒的大小增大,尤其是在界面层两种玻璃复合材料制造过程使原纤维富含SiO2的表面层消失,而且发生了界面层碳结构的有序化。  相似文献   

13.
以聚硅乙炔(PMSA)为交联剂,改性硅硼碳氮(SiBCN)陶瓷前驱体,对前驱体的合成与裂解行为进行了详细研究.该前驱体陶瓷产率高(>80wt%),并且陶瓷产物致密、抗氧化性能优良.采用FT-IR对改性前驱体的结构进行了表征,采用DSC、TGA、XRD、马弗炉煅烧等方法对改性前驱体固化行为及其裂解产物的高温稳定性能、抗氧...  相似文献   

14.
介绍了连续碳化硅纤维增强碳化硅基复合材料(SiC_f/Si C)常见的3种制备工艺,即化学气相渗透(CVI)工艺、前驱体浸渍/裂解(PIP)工艺及熔渗(MI)工艺的不同特点,探讨了国外不同工艺制备的复合材料的基本性能,并简述了SiC_f/SiC陶瓷基复合材料在航空发动机上的应用情况,以期为该材料在国内航空发动机领域的发展提供一定的参考。  相似文献   

15.
硼吖嗪聚合物先驱体热解制备BN基复合材料   总被引:2,自引:0,他引:2  
综述了硼吖嗪聚合物先驱体热解法制备陶瓷基复合材料的研究进展 ,提出几种合成硼吖嗪单体的方法 ,并着重讨论了纤维增强 BN基复合材料的实验原理 ,制备过程及其性能  相似文献   

16.
掺混型碳化硅纤维微波吸收剂的制备   总被引:5,自引:0,他引:5  
运用功率超声将平均粒径30nm的超细金属铁粉均匀分散到聚碳硅烷中,通过熔融纺丝,不熔化处理,烧结,制备出具有良好力学性能,电阻率连续可调的掺混弄烨奔走陶瓷纤维。  相似文献   

17.
为研究界面层对SiC_f/SiC复合材料力学性能及氧化行为的影响,采用先驱体浸渍裂解工艺制备了3种不同界面层体系的SiC_f/SiC复合材料。3种界面层分别为热解碳(PyC)、PyC+BN-Ⅰ和PyC+BN-Ⅱ(其中BN-Ⅰ表示B质量分数大约2%,BN-Ⅱ表示B质量分数大约20%)。研究表明,具有PyC界面层的SiC_f/SiC复合材料常温力学性能最高,其常温弯曲强度达到380MPa,而双界面层体系中,SiC_f/SiC复合材料常温弯曲强度分别为282MPa(PyC+BN-Ⅰ)和259MPa(PyC+BN-Ⅱ)。1200℃氧化试验表明,具有PyC+BN-Ⅱ界面层的SiC_f/SiC复合材料弯曲强度保留率最高,为54%。3种不同界面层体系的SiC_f/SiC复合材料在氧化后均表现为脆性断裂。微观结构显示,界面和纤维被氧化是导致材料最终失效的原因;能谱分析表明,具有PyC+BN-Ⅰ和PyC+BN-Ⅱ界面层的SiC_f/SiC复合材料纤维内部未检测到O原子存在,证实BN有保护纤维的作用。  相似文献   

18.
碳化硅纤维增韧碳化硅陶瓷基复合材料(SiC/SiC CMC)具有低密度、高强高模、耐高温抗氧化、抗蠕变、抗热冲击、耐腐蚀、材料热膨胀系数小等性能优点,在航空发动机上具有巨大的应用潜力。从碳化硅纤维、制备工艺、界面相和涂层等方面综述了国内外SiC/SiC CMC的发展现状,并基于SiC/SiC CMC的性能特点对其在航空发动机燃烧室火焰筒、混合器、涡轮罩环/静子叶片/转子叶片、喷管调节片等热端部件上的应用情况进行了介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号