首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
航空发动机采用弹性支承后,转子弹性变形会造成主传动弧齿锥齿轮相对位置的变化,从而影响齿面接触性能。针对某型涡喷发动机转子系统,分析求解了弹性支承下齿轮安装处的变形,并将其等效地转化为齿轮副间的安装距偏差,在此基础上,完成了弧齿锥齿轮齿面接触特性分析。在转子系统模拟试验台上,对发动机主传动锥齿轮接触性能进行了实验研究。分析与实验结果同时表明支承刚度对齿面接触区和传动误差皆有很大影响。  相似文献   

2.
螺旋锥齿轮啮合刚度及参数振动稳定性研究   总被引:1,自引:1,他引:1  
准确计算时变啮合刚度是齿轮系统动力学研究的基础.针对航空高速重载螺旋锥齿轮,基于轮齿接触分析(TCA)和轮齿加载接触分析(LTCA)通过计算瞬时接触点的轮齿变形柔度建立了时变啮合刚度数值模型;将齿轮时变啮合刚度在一个啮合周期内视为逐段线性,基于Floquet理论推导了含时变刚度参数振动系统的状态转换矩阵解析式;通过修正小轮机床调整参数设计三种接触情况,分析了算例齿轮在相同载荷工况下的接触轨迹、传动误差、重合度和时变啮合刚度;采用二自由度齿轮系统动力学模型考察工作转速范围内的周期运动不稳定区间,分析了时变啮合刚度对螺旋锥齿轮系统参数振动稳定性的影响.   相似文献   

3.
调整参数误差对齿面接触质量的影响   总被引:2,自引:5,他引:2  
从齿面接触分析(Toothcontactanalysis,TCA)内含的啮合信息分析机床调整参数误差对齿面接触质量的影响,研究机床调整参数误差与螺旋锥齿轮齿面接触分析之间的关联规律.以SGM(螺旋锥齿轮,大轮展成法,小轮变性法加工)调整卡加工的弧齿锥齿轮副为研究对象,分析得到各个调整参数误差引起的齿面接触质量的变化规律.在此基础上,确定对齿面接触质量有较大影响的机床调整参数.   相似文献   

4.
弧齿锥齿轮传动试验器动力特性计算及分析   总被引:3,自引:0,他引:3  
采用弯扭耦合传递矩阵法计算弧齿锥齿轮传动试验器的动力特性,研究弧齿锥齿轮啮合力作用下试验转子动力特性规律,分析试验器轴承受力及齿轮箱振动,各项计算结果与试验结果吻合较好。   相似文献   

5.
预应力作用下弧齿锥齿轮的动频率计算   总被引:4,自引:0,他引:4  
弧齿锥齿轮是航空发动机中的基本元件,常发生共振破坏.运用自主开发的弧齿锥齿轮设计分析系统建立了包含齿轮完整结构的有限元网格模型,并导人ANSYS软件中进行了考虑工作转速和啮合扭矩引起的预应力影响的弧齿锥齿轮动频率计算,结果表明工作转速引起的离心力和啮合扭矩对弧齿锥齿轮的振动频率有一定的影响.  相似文献   

6.
某发动机中心螺旋圆锥齿轮组件故障研究   总被引:1,自引:0,他引:1  
本文对发动机附件传动中心螺旋圆锥齿轮联接螺栓的断裂故障,从振动、强度、工艺、材料多方面进行故障机理的研究,找出了故障发生的主要原因。文中对故障件进行模态分析,临界转速计算,强度和疲劳寿命的校核,得到了组件失效是由于齿轮干涉产生的激振力引起的疲劳断裂。  相似文献   

7.
张宇  严宏志  王志永  曾韬 《航空动力学报》2021,36(12):2586-2595
分析弧齿锥齿轮刀盘的结构特征与切齿运动特点,提出三个参考点的设置方法。以大轮采用展成法,小轮采用螺旋展成法加工的弧齿锥齿轮副为研究对象,提出了全工序法大轮加工参数的简化计算方法。总结螺旋锥齿轮的一般啮合规律,结合参考点设置方法,利用Free-Form型机床的柔性运动控制特征,建立了小轮的切齿控制优化模型,获得一组最优化的加工参数。以此计算方法开发了设计软件,基于国产全数控锥齿轮加工装备,以一对准双曲面齿轮为算例进行了网络化闭环制造,试验结果显示:齿轮副传动误差幅值达13.2″,两齿面接触区均位于齿面中部、呈内对角,验证了方法的正确性,有效解决了全工序法加工弧齿锥齿轮时双面接触特征同步调整困难的行业难题。   相似文献   

8.
螺旋锥齿轮边缘接触分析   总被引:8,自引:1,他引:8  
边缘接触是一种轮齿齿顶边缘传递运动的现象。这时,接触区在齿根或齿顶处产生一条硬印。常规的齿面接触分析(TCA)结果是一组间断的误差曲线和不完整的接触区,未能反映一个完整的接触过程。本文提出了描述边缘接触这一现象的具体方法。可得到完整的传动误差曲线和接触区图,为进一步的边缘接触振动分析打下了基础。   相似文献   

9.
基于局部综合原理,提出弧齿锥齿轮副的低噪声、低安装误差敏感性设计方法。介绍了基于局部综合原理的弧齿锥齿轮小轮加工参数设计的基本过程,通过预置传动比函数的1阶导数、大轮齿面参考点处接触迹线的切线方向和瞬时接触椭圆的长半轴长度和点接触局部综合公式,求得小轮的加工参数;根据得到的弧齿锥齿轮副的加工参数,进行齿面接触分析,进而获得齿面接触印痕和传动误差曲线;对某型航空弧齿锥齿轮副进行了基于局部综合法的加工参数设计,得到对称抛物线型传动误差曲线和接近于直线的啮合印痕。齿面接触印痕和传动误差曲线有利于降低弧齿锥齿轮副的啮合振动和噪声以及对安装误差的敏感性。  相似文献   

10.
基于NURBS的弧齿锥齿轮真实齿面的数字化仿真   总被引:1,自引:1,他引:1  
针对已加工航空弧齿锥齿轮的齿面质量检验,提出用高精度数字化齿面的TCA(tooth contact analysis)仿真代替传统的滚检的方法.参照Gleason公司弧齿锥齿轮的齿面测量标准,在三坐标检测机上测得一对弧齿锥齿轮齿面上离散型值点坐标,完成双三次NURBS(非均匀有理B样条)曲面拟合,得到数字化齿面;依据空间啮合理论对数字化齿面进行齿面接触分析,并与滚检实验结果进行比较,验证了该方法的正确性及可行性.   相似文献   

11.
大功率弧齿锥齿轮设计技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用自行开发的弧齿锥齿轮加载分析专用程序,对大功率弧齿锥齿轮设计技术进行了研究。分析了轮齿承载后的齿面接触区的大小和位置,计算了齿根弯曲应力和齿面接触应力,并对齿轮振动特性、齿轮系的振动噪声和齿轮啸叫进行了研究。研究成果为航空发动机弧齿锥齿轮的设计、制造、强度计算和动力学分析提供了理论基础,并有效提高了发动机传动系统的可靠性。  相似文献   

12.
This paper proposes a new approach to mial function of transmission error (TE) for spiral design and implement a seventh-order polyno- bevel gears with an aim to reduce the running vibration and noise of gear drive and improve the loaded distribution of the tooth. Based on the constraint conditions of predesigned seventh-order polynomial function curve and the theory of linear algebra, the polynomial coefficients of the seventh-order polynomial function of transmission error can be obtained. By applying a method named reverse tooth contact analysis, the modified roll coefficients as well as parts of machine-tool settings for the face-milling of spiral bevel gears can be individually determined. Therefore, a predesigned seventh-order polynomial function of transmission error for spiral bevel gears can be obtained by the modified roll with high-order coef- ficients, and comparisons of the seventh-order polynomial and parabolic functions of transmission error are also performed. The achievement of spiral bevel gears with the seventh-order function of transmission error can be accomplished on a universal Cartesian-type hypoid gear generator or a numerically controlled cradle-style hypoid gear generator due to its simple generating motion of axes of the cradle and the work piece. The results of a numerical example show that the bending stresses of the tooth of seventh-order are less than those of a parabolic one, while the contact stresses remain almost eouivalent.  相似文献   

13.
基于预定啮合特性的点啮合齿面设计方法   总被引:4,自引:4,他引:0  
针对格里森螺旋锥齿轮齿面设计方法无法在整个齿面接触传动过程中有效控制齿面啮合特性的不足,论述一种按预定的啮合特性设计点啮合齿面的理论和方法:啮合齿面的接触迹线上每一点的几何结构按预定的齿面啮合特性要求设计,而与特定的机床结构参数无关.啮合点的二阶接触参数通过弹性齿轮副的载荷-变形效应条件,而不是接触区的位置、大小和形状来设计.实例计算和分析表明本文的点啮合齿面设计方法是格里森齿面设计方法在数控技术条件下的发展和完善.   相似文献   

14.
对时间方向引进正则变换函数, 给出了层合板动力学的Hamilton正则方程及其半解析法。通过分离变量, 就可以在板平面内采用通常的有限元离散, 而在板厚方向采用状态空间法给出解析解, 且通过传递矩阵, 保证了层间位移和应力的连续, 建立了层合板上下表面相变量的关系式, 利用打靶法进行求解。数值算例表明:本文方法未知量少, 精度高。   相似文献   

15.
为了解决当前数控加工中通用刀具加工弧齿锥齿轮存在的加工效率低、易切削颤振等问题,提出了中凹盘铣刀数控端铣弧齿锥齿轮的方法.基于对弧齿锥齿轮齿面几何结构的研究,通过选择大直径、刀底内凹的盘形铣刀,主动改变刀具姿态角的设置顺序,并分离了前倾角和侧倾角的功能,可以实现弧齿锥齿轮的齿底无干涉和大切削带宽加工.先以切触点位置确定侧倾角避免过切齿槽底面,再以平底刀加工自由曲面的思想分别确定两侧齿面的前倾角,保证大的切削带宽和高加工效率.结果表明:以一个弧齿锥齿轮大轮为例,中凹盘铣刀端铣轮两侧齿面分别以7次、6次切削完成加工,最大加工误差分别为0.039 4mm和0.041 8mm.采用该方法加工弧齿锥齿轮,具有刀具耐用度高,切削带宽大,走刀次数少和加工精度高等优点.  相似文献   

16.
针对由弧齿锥齿轮和行星轮系构成的直升机传动系统,构建了纯扭振动模型,采用集中参数法建立了齿侧间隙非线性动力学方程.通过有限元方法求得了时变啮合刚度,采用4-5阶变步长Runge-Kutta法对动力学方程进行了数值求解,借助动载系数、相图、Poincaré截面图、快速傅里叶变换频谱图等分析手段,研究了传动系统在时变啮合刚度、齿侧间隙、综合传动误差、外载荷等多种激励作用下系统的动载特性.结果表明啮合刚度对传动系统的影响最大,动载系数最大值为1.5;齿侧间隙对系统响应特性的影响是有限的;啮合误差在一定程度上抑制了齿轮系统的振动;外载荷波动对不同速级的影响不同,动载系数最大值发生在并车传动.  相似文献   

17.
弧齿锥齿轮切齿和啮合过程的数字仿真   总被引:1,自引:0,他引:1  
针对弧齿锥齿轮的切齿和啮合过程,建立了用数字仿真技术研究锥齿轮齿面形成和轮齿啮合过程的方法。在该方法中,将齿面切制时的线共轭条件转化为约束极值问题,据此获得被切齿面的数值模型;将轮齿啮合时的点共轭条件转化为在两齿面上求距离最近的点,并借助齿面数值模型,获得接触印痕和传动误差。用本文方法进行了某航空弧齿锥齿轮的切齿和啮合过程的数字仿真。   相似文献   

18.
盘形锥齿轮振动特性和故障分析   总被引:5,自引:0,他引:5  
本文用试验和分析方法研究了A、B两种盘形锥齿轮在旋转条件下正常啮合时的振动特性和几种因素对振动特性的影响,并对A型齿轮断块故障作了分析,可供排除此类齿轮成块断裂故障参考。  相似文献   

19.
弧齿锥齿轮的齿距误差对传动性能的影响研究   总被引:1,自引:3,他引:1  
采用齿轮啮合仿真和承载啮合仿真技术 ,对重合度达到 2 .0的航空弧齿锥齿轮的齿距误差的影响进行了研究。首先定义了航空弧齿锥齿轮相对齿距误差 ,选取了量级 ,研究了这一误差对齿轮实际重合度、传动误差、齿面载荷分布和齿间载荷分配的影响。进一步又分析了在一定齿距误差下载荷变化的影响以及固定载荷下误差变化的影响 ,为高重合度航空弧齿锥齿轮的应用提供了依据  相似文献   

20.
弧齿圆锥齿轮传动的振动分析   总被引:6,自引:0,他引:6  
方宗德  高平  宋乐民 《航空学报》1994,15(5):576-581
 考虑了齿轮体在各个方向的线振动和角振动,以及齿轮辐板和输入轴、输出轴的扭转变形,以弧齿锥齿轮传动系为对象,建立了一个多刚体多自由度的振动系统模型,推导了这一系统的参数激励微分方程组。再将方程组转化为线性定常的形式,并将参数激励转化为外激励,成功地求解了弧齿锥齿轮传动系统的振动过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号