首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Energetic particle instrumentation on the Polar satellite has discovered that significant fluxes of energetic particles are continuously present in the region of the dayside magnetosphere where they cannot be stably trapped. This region is associated with either open magnetic field lines or a magnetic topology associated with pseudo-trapping. Two distinct features [Time-Energy Dispersion (TED) signatures and Cusp Energetic Particle (CEP) events] are observed in these energetic particle fluxes that strongly suggest a local acceleration of mostly shocked solar wind particles. As the solar wind particles ram themselves into the cusp geometry, they form diamagnetic cavities with strong turbulence that are capable of accelerating particles to energies of 100s and 1000s of kiloelectronvolts. This process forms a layer of energetic particles on the magnetopause as well as permits such particles to enter via drift the equatorial nightside magnetosphere to distances as close as six Earth radii under the influence of gradient and curvature effects in the local magnetic field. The fluxes of these particles have all of the properties associated with the ring current and can supply the magnitude of the cross tail current required. ISEE-1 energetic particle data and their pitch angle distributions [PAD] are examined at the magnetic equatorial plane on the night side to investigate and possibly validate the insights gains from the Polar data and energetic particle trajectory tracing in a realistic magnetic field. The existence and properties of butterfly-type PADs strongly supports the concept of a dayside high latitude source of energetic particle fluxes. Because the CEP process is impulsive and time variable the charge separation produced by the drifting electrons (eastward) and ions (westward) on the magnetospheric nightside may be responsible for the cross tail electric field that has been ascribed to the reconnection/convection process.  相似文献   

3.
4.
MESSENGER: Exploring Mercury’s Magnetosphere   总被引:1,自引:0,他引:1  
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere, allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, ∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field. MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.  相似文献   

5.
Saturn??s rich magnetospheric environment is unique in the solar system, with a large number of active magnetospheric processes and phenomena. Observations of this environment from the Cassini spacecraft has enabled the study of a magnetospheric system which strongly interacts with other components of the saturnian system: the planet, its rings, numerous satellites (icy moons and Titan) and various dust, neutral and plasma populations. Understanding these regions, their dynamics and equilibria, and how they interact with the rest of the system via the exchange of mass, momentum and energy is important in understanding the system as a whole. Such an understanding represents a challenge to theorists, modellers and observers. Studies of Saturn??s magnetosphere based on Cassini data have revealed a system which is highly variable which has made understanding the physics of Saturn??s magnetosphere all the more difficult. Cassini??s combination of a comprehensive suite of magnetospheric fields and particles instruments with excellent orbital coverage of the saturnian system offers a unique opportunity for an in-depth study of the saturnian plasma and fields environment. In this paper knowledge of Saturn??s equatorial magnetosphere will be presented and synthesised into a global picture. Data from the Cassini magnetometer, low-energy plasma spectrometers, energetic particle detectors, radio and plasma wave instrumentation, cosmic dust detectors, and the results of theory and modelling are combined to provide a multi-instrumental identification and characterisation of equatorial magnetospheric regions at Saturn. This work emphasises the physical processes at work in each region and at their boundaries. The result of this study is a map of Saturn??s near equatorial magnetosphere, which represents a synthesis of our current understanding at the end of the Cassini Prime Mission of the global configuration of the equatorial magnetosphere.  相似文献   

6.
This review is concerned with the interplanetary ‘transmission line’ between the Sun and the Earth's magnetosphere. It starts with comments about coronal mass ejections (CMEs) that are associated with various forms of solar activities. It then continues with some of the current views about their continuation through the heliosphere to Earth and elsewhere. The evolution of energy, mass, and momentum transfer is of prime interest since the temporal/spatial/magnitude behavior of the interplanetary electric field and transient solar wind dynamic pressure is relevant to the magnetospheric response (the presence or absence of geomagnetic storms and substorms) at Earth. Energetec particle flux predictions are discussed in the context of solar activity (flares, prominence eruptions) at various positions on the solar disk relative to Earth's central meridian. A number of multi-dimensional magnetohydrodynamic (MHD) models, applied to the solar, near-Sun, and interplanetary portions of the ‘transmission line’, are discussed. These model simulations, necessary to advancing our understanding beyond the phenomenological or morphological stages, are directed to deceptively simple questions such as the following: can one-to-one associations be made between specific forms of solar activity and magnetosphere response?  相似文献   

7.
8.
Williams  D. J. 《Space Science Reviews》1997,80(1-2):369-389
The relative importance of the two known substantive sources of magnetospheric particles, the solar wind and the ionosphere, remains largely undetermined throughout much of the magnetosphere. For the specific case of the geomagnetic tail however, the development of a remarkable family of models incorporating the kinetics of charged particle motion, has opened the possibility of determining relative strengths and geometries of the solar wind and ionospheric sources that are responsible for observed tail particle populations. Once source strengths and geometries are determined, transport paths and mechanisms can be identified, in turn leading to a determination of acceleration/heating mechanisms and locations. Loss processes then determine the quasi-equilibrium particle distributions in the tail. A quantitative understanding of the tail and its dynamics requires extensive, detailed comparisons of data and model results. Data obtained over the past two decades have led to the result that for energies at least above ~ 1 eV, both sources are well mixed throughout the tail and that the solar wind is the dominant source. New, unique data sets have provided the initial data comparisons with the models and show great promise in deconvolving source strengths and geometries and ultimately understanding the formation and behavior of the tail.  相似文献   

9.
The coupling between the ionosphere and the outer magnetosphere depends on the topology of the geomagnetic field. Some aspects of the closed and open magnetospheric models are briefly discussed.The assumption that the geomagnetic field lines are equipotentials is critisized both on observational and on theoretical grounds. Measurements of H Doppler profiles, of precipitating particles above the ionosphere, and of charged particle densities in the magnetosphere indicate the existence of electric fields, E\\, parallel with the magnetic field.Two different models of E\\ are considered. Both models violate the condition of frozen-in magnetic fields. In one of them there are occasional transient electric field impulses along the field lines which cause precipitation splashes. The other model invokes electrostatic fields which vanish occasionally due to instabilities. This gives rise to precipitation splashes of about equal numbers of ions and electrons.The latter model seems to be favoured by known satellite data concerning the pitch angle distributions of electrons above the ionosphere.It is suggested that electric fields in space should be measured by satellites and rockets. Expected values of the fields in different regions of space are given.  相似文献   

10.
11.
A review is given on the distribution and origin of the large-scale electric field in the magnetosphere and its influence on the dynamical behavior of the magnetospheric plasma. Following a general discussion on the gross structure of the magnetosphere and its tail, two principal electric field systems are deduced from ground-based geomagnetic variations. One is responsible for the polar substorm, the DP 1 field, which is closely associated with the activation of the auroral electrojet. The other is responsible for the twin current vortices, the DP 2 field, and this represents the general convective system set up in the magnetospheric plasma.The origin of these magnetospheric electric fields is possibly resided in the domain of the solar wind interacting with the outer geomagnetic field. However, the mechanism, in which the energy is transferred, is still quite controversial. Several theories so far proposed are re-examined, and some modification of them are suggested to have a consistent understanding of these two types of electric fields. The effects of electric fields on magnetospheric plasma dynamics are described, such as the formation of the plasmapause, the acceleration and diffusion of energetic particles in the radiation belt.  相似文献   

12.
Smart  D.F.  Shea  M.A.  Flückiger  E.O. 《Space Science Reviews》2000,93(1-2):305-333
The calculation of particle trajectories in the Earth's magnetic field has been a subject of interest since the time of Störmer. The fundamental problem is that the trajectory-tracing process involves using mathematical equations that have `no solution in closed form'. This difficulty has forced researchers to use the `brute force' technique of numerical integration of many individual trajectories to ascertain the behavior of trajectory families or groups. As the power of computers has improved over the decades, the numerical integration procedure has grown more tractable and while the problem is still formidable, thousands of trajectories can be computed without the expenditure of excessive resources. As particle trajectories are computed and the characteristics analyzed we can determine the cutoff rigidity of a specific location and viewing direction and direction and deduce the direction in space of various cosmic ray anisotropies. Unfortunately, cutoff rigidities are not simple parameters due to the chaotic behavior of the cosmic-ray trajectories in the cosmic ray penumbral region. As the computational problem becomes more manageable, there is still the issue of the accuracy of the magnetic field models. Over the decades, magnetic field models of increasing complexity have been developed and utilized. The accuracy of trajectory calculations employing contemporary magnetic field models is sufficient that cosmic ray experiments can be designed on the basis of trajectory calculations. However, the Earth's magnetosphere is dynamic and the most widely used magnetospheric models currently available are static. This means that the greatest uncertainly in the application of charged particle trajectories occurs at low energies.  相似文献   

13.
The large-scale electrical coupling between the ionosphere and magnetosphere is reviewed, particularly with respect to behavior on time scales of hours or more. The following circuit elements are included: (1) the magnetopause boundary layer, which serves as the generator for the magnetospheric-convection circuit; (2) magnetic field lines, usually good conductors but sometimes subject to anomalous resistivity; (3) the ionosphere, which can conduct current across magnetic field lines; (4) the magnetospheric particle distributions, including tail current and partial-ring currents. Magnetic merging and a viscous interaction are considered as possible generating mechanisms, but merging seems the most likely alternative. Several mechanisms have been proposed for causing large potential drops along magnetic field lines in the upper ionosphere, and many isolated measurements of parallel electric fields have been reported, but the global pattern and significance of these electric fields are unknown. Ionospheric conductivities are now thoroughly measured, but are highly variable. Simple self-consistent theoretical models of the magnetospheric-convection system imply that the magnetospheric particles should shield the inner magnetosphere and low-latitude ionosphere from most of the time-average convection electric field.  相似文献   

14.
The paper reviews various approaches to the problem of evaluation and numerical representation of the magnetic field distributions produced within the magnetosphere by the main electric current systems including internal Earth's sources, the magnetopause surface current, the tail plasma sheet, the large-scale systems of Birkeland current, the currents due to radiation belt particles, and the partial ring current circuit. Some basic physical principles as well as mathematical background for development of magnetospheric magnetic field models are discussed.A special emphasis is placed on empirical modeling based on datasets created from large bodies of spacecraft measurements. A review of model results on the average magnetospheric configurations and their dependence on the geomagnetic disturbance level and the state of interplanetary medium is given. Possibilities and perspectives for elaborating the instantaneous models capable of evaluating a current distribution of magnetic field and force line configuration based on a synoptic monitoring the intensity of the main magnetospheric electric current systems are also discussed. Some areas of practical use of magnetospheric models are reviewed in short. Magnetospheric plasma and energetic particle measurements are considered in the context of their use as an independent tool for testing and correcting the magnetic field models.  相似文献   

15.
The formation of Titan??s induced magnetosphere is a unique and important example in the solar system of a plasma-moon interaction where the moon has a substantial atmosphere. The field and particle conditions upstream of Titan are important in controlling the interaction and also play a strong role in modulating the chemistry of the ionosphere. In this paper we review Titan??s plasma interaction to identify important upstream parameters and review the physics of Saturn??s magnetosphere near Titan??s orbit to highlight how these upstream parameters may vary. We discuss the conditions upstream of Saturn in the solar wind and the conditions found in Saturn??s magnetosheath. Statistical work on Titan??s upstream magnetospheric fields and particles are discussed. Finally, various classification schemes are presented and combined into a single list of Cassini Titan encounter classes which is also used to highlight differences between these classification schemes.  相似文献   

16.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The electron and ion beams which have been detected on many rockets and satellites are of particular interest because beam particles carry information about both the ionosphere and the magnetosphere out to the distant tail. Stability analyses have shown that even the most dramatic beams have evolved until the particle distribution functions are only weakly unstable. The shortest plasma wave growth lengths in the auroral region are usually comparable to the size of an arc. The resulting clearest electron beams generally are relatively minor features of distribution functions which are dominated by plateaus, loss cones, broad or stretched out field aligned features, and hot or cold isotropic components. The true electron beams therefore represent a small fraction of the total electron number density. Ion beams carry a much larger fraction of all ions, but also are only weakly unstable. The electron beams seen at low altitudes can drive whistlers (both electromagnetic and electrostatic, including lower hybrid waves) and upper hybrid waves, which may be particularly intense near electron gyroharmonics. Ion beams can drive low frequency electromagnetic waves that are related to gyrofrequencies of several ion species as well as ion acoustic and electrostatic ion cyclotron waves. These latter waves can be driven both by the drift of ion beams relative to cold stationary ions and by the drift of electrons relative to either stationary or drifting ions. Abrupt changes or boundaries in the electron and ion velocity space distribution functions (e.g. beams and loss cones) have been analyzed to provide information about the plasma source, acceleration process, and regions of strong wave-particle interactions. Fluid analyses have shown that upgoing ion beams carry a great deal of momentum flux from the ionosphere. This aspect of ion beams is analyzed by treating the entire acceleration region as a black box, and determining the forces that must be applied to support the upgoing beams. This force could be provided by moderate energy (10's of eV) electrons which are heated near the lower border of the acceleration region. It is difficult to use standard particle detectors to measure the particles which carry electric current in much of the magnetosphere. Such measurements may be relatively easy within upgoing ion beams because there is some evidence that few of the hard-to-measure cold plasma particles are present. Therefore, ion beam regions may be good places to study fluid or MHD properties of magnetospheric plasmas, including the identification of current carriers, a study of current continuity, and some aspects of the substorm and particle energization processes. Finally, some of the experimental results which would be helpful in an analysis of several magnetospheric problems are summarized.  相似文献   

18.
Echim  M.M.  Lemaire  J.F. 《Space Science Reviews》2000,92(3-4):565-601
Plasma interaction at the interface between the magnetosheath and magnetosphere has been extensively studied during recent years. As a consequence various theoretical models have emerged. The impulsive penetration mechanism initially proposed by Lemaire and Roth as an alternative approach to the steady state reconnection, is a non-stationary model describing the processes which take place when a 3-D solar wind plasma irregularity interacts with the outer regions of the Earth's magnetosphere. In this paper we are reviewing the main features of the impulsive penetration mechanism and the role of the electric field in driving impulsive events. An alternative point of view and the controversy it has raised are discussed. We also review the numerical codes developed to simulate the impulsive transport of plasma across the magnetopause. They have illustrated the relationship between the magnetic field distribution and the convection of solar-wind plasma inside the magnetosphere and brought into perspective non-stationary phenomena (like instabilities and waves) which were not explicitly integrated in the early models of impulsive penetration. Numerical simulations devoted to these processes cover a broad range of approximations, from ideal MHD to hybrid and kinetic codes. The results show the limitation of these theories in describing the full range of phenomena observed at the magnetopause and magnetospheric boundary layers.  相似文献   

19.
Onsager  T.G.  Lockwood  M. 《Space Science Reviews》1997,80(1-2):77-107
Two central issues in magnetospheric research are understanding the mapping of the low-altitude ionosphere to the distant regions of the magnetsphere, and understanding the relationship between the small-scale features detected in the various regions of the ionosphere and the global properties of the magnetosphere. The high-latitude ionosphere, through its magnetic connection to the outer magnetosphere, provides an important view of magnetospheric boundaries and the physical processes occurring there. All physical manifestations of this magnetic connectivity (waves, particle precipitation, etc.), however, have non-zero propagation times during which they are convected by the large-scale magnetospheric electric field, with phenomena undergoing different convection distances depending on their propagation times. Identification of the ionospheric signatures of magnetospheric regions and phenomena, therefore, can be difficult. Considerable progress has recently been made in identifying these convection signatures in data from low- and high-altitude satellites. This work has allowed us to learn much about issues such as: the rates of magnetic reconnection, both at the dayside magnetopause and in the magnetotail; particle transport across the open magnetopause; and particle acceleration at the magnetopause and the magnetotail current sheets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号