共查询到17条相似文献,搜索用时 46 毫秒
1.
针对航空发动机中介轴承故障信号微弱,故障特征提取困难的问题,提出了基于容忍遗传算法(TAGA)的自适应双稳态随机共振(BSR)的中介轴承故障诊断方法。在传统自适应遗传算法中引入容忍度思想,建立一种容忍遗传算法,采用容忍遗传算法对双稳态随机共振系统的结构参数a,b进行优化,建立自适应双稳态随机共振系统对故障信号进行处理。为验证该方法的有效性,搭建了中介轴承故障模拟实验系统,开展中介轴承内圈和外圈故障模拟实验。采用该方法分别对仿真信号和实验信号进行处理。结果表明:该方法能够对故障信号进行增强,提升了故障特征频率提取能力。自适应优化结构参数后,提取的特征频率与故障频率理论值的误差小于0.1%。 相似文献
2.
提出了多通道相关-自适应共振解调(MCC-ARD)方法 ,该方法使用冗余信号源采集故障信息,并利用谱峭度(SK)优化经验模态分解(EMD)的分解效率,根据互相关系数更加合理地选择本征模态函数(IMF)分量完成重构,对重构IMF进行包络解调,实现对滚动轴承的故障诊断。通过对多通道相关-自适应共振解调方法的实测数据分析,结果表明:该方法不仅克服了单一信号源系统修正能力差的缺陷,而且相频谱辨识率为传统EMD结合谱峭度共振解调方法的2.7倍,对滚动轴承故障的诊断结果更加清晰、准确。 相似文献
3.
针对振动信号中轴承故障特征信号微弱难以识别的问题,对通过试验采集到的内环故障、外环故障以及滚动体故障振
动信号进行处理。采用最小二乘法和指数平滑法对振动信号进行预处理,利用EMD分离振动信号的局部特征,并根据IMF分量
的信息熵增益比实现重构;采用ICA对混叠的振动信号进行分离,并对分离后的振动信号进行特征提取;采用遗传算法对多维振
动特征参量进行降维,筛选出最优特征参量;采用遗传算法优化的极限学习机对轴承故障振动特征集进行识别,将常见的SVM、
BP等诊断模型作为对比算法。试验结果表明:采用ICA能将混叠信号有效分离,实现故障信号的提取;遗传算法不仅能够实现最
优特征的选择,同时能够对极限学习机算法进行有效优化,提升算法的诊断效果。优化的算法相比其它诊断识别方法性能较佳,
使3种故障的平均诊断效果达到90%以上。 相似文献
4.
针对航空发动机中介轴承故障信号难于识别的问题,提出了1种融合k NN、SVM、CART、RF及GBDT 5种算法的会诊决策融合模型。基于中介轴承故障模拟试验台开展某型航空发动机中介轴承故障试验验证。采用EMD算法对采集的振动故障信号进行分解,提取IMF分量的模糊熵作为故障特征。利用建立的会诊模型对中介轴承内环故障、内环-滚动体耦合故障、正常、滚棒剥落、滚棒划伤5种不同状态进行识别。试验研究表明:会诊模型的故障诊断准确率高达92.5%,并表现出良好的泛化能力。 相似文献
5.
为了准确提取轴承的故障特征,提出了一种遗传算法(GA)参数优化的变分模态分解(VMD)结合1.5维谱的轴承故障诊断方法。首先以VMD方法中模态分量的包络熵值最小为优化目标,利用遗传算法对模态分量个数和二次惩罚因子进行优化,确定这两个能使VMD实现最优分解的输入参数。然后利用参数优化的VMD方法对仿真信号和轴承内环故障信号进行分解,并做各模态分量的1.5维谱图。参数优化的VMD分解得到了与仿真信号原始分量相符的4个模态分量,1.5维谱剔除了未参与二次相位耦合的10Hz频率分量。同时在1k Hz频率以下,运用本文方法提取了轴承内环故障特征频率的1至6倍频频率成分以及电机转频对它们的调制频率。由此表明,遗传算法参数优化的VMD可实现复杂信号的正确分解,1.5维谱可有效检测信号的二次相位耦合。同时,遗传算法参数优化的VMD结合1.5维谱能有效提取轴承内环故障特征,从而验证了本文方法的有效性和实用性。 相似文献
6.
滚动轴承早期故障信号中的噪声成分会影响到故障特征的提取。为了提高含噪故障信号中滚动轴承早期故障特征提取的准确性,将基于自适应噪声的完备经验模态分解(CEEMDAN)用于滚动轴承振动信号的降噪中,并对降噪后的轴承故障信号进行双谱分析。结果表明:CEEMDAN可有效去除轴承振动信号中的低频噪声干扰,经CEEMDAN降噪后的不同轴承故障信号的双谱全局图存在明显差异,根据这些差异可在宏观上对不同轴承故障加以区分;通过经CEEMDAN降噪后的不同轴承故障信号的双谱细节图可以正确提取不同轴承故障的特征频率,从而实现对各轴承故障的有效诊断。CEEMDAN降噪结合双谱分析可为滚动轴承故障诊断提供一种新的有效方法。 相似文献
7.
滚动轴承故障诊断的自适应共振解调技术 总被引:5,自引:9,他引:5
针对共振解调技术在实际使用中存在必须事先通过冲击试验确定高频共振频率和带通滤波器的中心频率固定不变的缺点,提出了自适应共振解调技术。自适应共振解调技术可以在共振解调处理之前依靠对振动信号的频谱分析自动识别高频共振频率,然后根据被测对象的高频共振频率自适应地改变带通滤波器的中心频率。并研究了自适应共振解调技术的实现方法,并对实际轴承振动信号进行了自适应共振解调分析。研究结果表明,该技术可方便地在工程中应用。 相似文献
8.
9.
针对航空发动机转子系统中轴承故障诊断困难的问题,提出基于人工鱼群算法(AFSA)优化的级联随机共振轴承故障诊
断方法。建立1 个2 级级联随机共振系统对轴承微弱故障信号进行增强,以故障信号的输出信噪比为优化目标函数,采用AFSA 算
法同步优化双稳态随机共振系统的结构参数a 和b,采用优化后的级联随机共振系统分别处理仿真信号和试验信号,提取故障特
征频率验证算法的有效性。结果表明:所建立的故障诊断算法具有良好的滤波降噪特性,提取的滚动轴承故障特征频率与理论值的
误差小于0.1%。 相似文献
10.
航空发动机主轴轴承故障诊断 总被引:1,自引:0,他引:1
某型航空发动机的主轴轴承由于频繁出现早期失效而引起发动机故障,因此,对滚动轴承进行状态监测和故障诊断具有重要的实际意义。针对常规方法难以准确分析非平稳信号的局限性,本文研究了基于小波分析的滚动轴承故障诊断方法,通过滚动轴承外表面损伤的仿真信号进行小波包频谱分析,验证了基于小波分析的滚动轴承故障诊断方法是可靠、准确的,可以应用于航空发动机主轴轴承的状态监测和故障诊断。 相似文献
11.
12.
提出注意力循环机制与胶囊网络融合的注意力循环胶囊网络(ARCN)的诊断模型。提取时序特征信息构建初级胶囊;自适应融合路由机制、注意力循环机制构建数字胶囊特征;基于西储大学轴承实验数据,验证了ARCN模型的准确率、鲁棒性、稳定性、收敛误差,其准确率相比Caps模型识别准确率提高1.2%、收敛误差达到0.2。基于实验仿真平台,采集正常、内环故障、外环故障和滚动体故障的振动信号,并通过小波基变换获取的时频图构建ARCN模型的数据集。仿真实验结果表明:ARCN模型下,每类故障被误诊的概率不超过总样本的1%。 相似文献
13.
基于VMD的自适应复合多尺度模糊熵及其在滚动轴承故障诊断中的应用 总被引:1,自引:1,他引:1
提出了一种基于自适应多尺度模糊熵、ILS(迭代拉普拉斯得分)特征选择和粒子群优化支持向量机(PSO-SVM)的滚动轴承故障诊断方法。该方法采用变分模态分解对振动信号进行分解和重构,并计算重构信号的复合多尺度模糊熵;同时采用迭代拉普拉斯得分选择敏感故障特征,并将特征选择结果输入到基于粒子群优化支持向量机的多故障分类器进行识别。将提出的方法应用于滚动轴承试验数据分析。结果表明:该方法对试验数据的故障识别率为100%。并将基于ILS特征选择方法与基于SFS(sequential forward selection)特征选择进行了对比,表明基于SFS特征选择的最高识别率为92.86%,而基于ILS特征选择的故障识别率达到100%。 相似文献
14.
基于自适应粒子滤波的涡扇发动机故障诊断 总被引:3,自引:1,他引:3
针对涡扇发动机非线性、非高斯的特点,提出了一种自适应的粒子滤波算法用于涡扇发动机气路部件突变故障的诊断.为了减小算法的计算量并且保证滤波精度,分析了滤波精度和样本数目的关系,提出根据滤波过程中状态的方差自适应地调整粒子数,在保证一定的滤波精度下可以有效地减少滤波过程中使用的粒子数,提高了算法的实时性.同时,引入扩展卡尔曼滤波(EKF)用于更新粒子,产生重要概率密度函数,在一定程度上避免了粒子的退化.通过某型涡扇发动机的仿真分析表明:改进的算法相比标准粒子滤波算法用于涡扇发动机气路部件故障诊断时,参数估计的方均根误差减小了50%左右,且算法的计算量减小了30%. 相似文献
15.
针对传统解调方法在滚动轴承振动信号故障特征提取中的局限性,在迭代Hilbert变换和共振解调技术基础上,提出了一种新的基于迭代希尔伯特变换(iterated Hilbert transform,简称IHT)的共振解调技术的滚动轴承故障诊断方法.采用IHT将原始振动信号分解为若干个含有故障特征信息的包络幅值分量,然后用共振解调法去除残余的高频干扰噪声并求得各个包络分量的倍频谱,利用轴承理论故障频率与共振解调得到的各倍频进行对比分析,诊断出滚动轴承相应的故障类型.轴承故障实例诊断分析结果表明该方法能有效地提取轴承故障特征. 相似文献
16.
针对目前飞机交流发电机故障诊断专家系统存在的知识表示复杂、诊断速度慢等问题,基于故障Petri网方法来进行知识表达,以快速准确对故障进行诊断,首先利用故障Petri网来建立飞机交流发电机的故障诊断模型,然后采用关联矩阵和状态方程的推理算法进行故障诊断推理,提高了推理速度,易于编程实现。最后通过实例分析验证了该方法的可行性和有效性。 相似文献
17.
采用经验模式分解方法(EMD),研究了发动机轴承的非平稳振动信号故障特征提取问题.计算机仿真结果证实了该方法的有效性;采用该方法提取了滚动轴承故障振动信号冲击特征,结果表明应用该方法能够准确、有效地获得轴承的冲击损伤特征,并且,经进一步分析,可确定冲击损伤故障失效模式. 相似文献