共查询到17条相似文献,搜索用时 46 毫秒
1.
针对航空发动机中介轴承故障信号微弱,故障特征提取困难的问题,提出了基于容忍遗传算法(TAGA)的自适应双稳态随机共振(BSR)的中介轴承故障诊断方法。在传统自适应遗传算法中引入容忍度思想,建立一种容忍遗传算法,采用容忍遗传算法对双稳态随机共振系统的结构参数a,b进行优化,建立自适应双稳态随机共振系统对故障信号进行处理。为验证该方法的有效性,搭建了中介轴承故障模拟实验系统,开展中介轴承内圈和外圈故障模拟实验。采用该方法分别对仿真信号和实验信号进行处理。结果表明:该方法能够对故障信号进行增强,提升了故障特征频率提取能力。自适应优化结构参数后,提取的特征频率与故障频率理论值的误差小于0.1%。 相似文献
2.
提出了多通道相关-自适应共振解调(MCC-ARD)方法 ,该方法使用冗余信号源采集故障信息,并利用谱峭度(SK)优化经验模态分解(EMD)的分解效率,根据互相关系数更加合理地选择本征模态函数(IMF)分量完成重构,对重构IMF进行包络解调,实现对滚动轴承的故障诊断。通过对多通道相关-自适应共振解调方法的实测数据分析,结果表明:该方法不仅克服了单一信号源系统修正能力差的缺陷,而且相频谱辨识率为传统EMD结合谱峭度共振解调方法的2.7倍,对滚动轴承故障的诊断结果更加清晰、准确。 相似文献
3.
针对经验小波变换(EWT)在滚动轴承故障信号最优频带提取中存在的问题,提出一种基于提取能量包络趋势线以自适应划分频带的改进EWT方法,并应用于滚动轴承故障诊断.利用Teager能量算子将频谱转换成能量谱,通过反复希尔伯特变换得到能量包络线.提取极大值并平滑处理,获得能量包络趋势线,对其进行1阶差分,选取有效极值点以自适应划分频带.构造一种归一化故障特征频率显著性指标,作为故障诊断和最优共振频带选取的有效判据.通过滚动轴承故障仿真和试验数据对算法进行验证.结果表明:相比于原始EWT,该方法可有效识别滚动轴承早期故障并合理选取最优共振频带.针对外、内圈故障数据所提指标可平均提升48.0%和174.1%. 相似文献
4.
针对中介轴承故障振动信号具有传递路径复杂、强背景噪声干扰等特点,其故障特征不易提取的问题,提出基于自适应噪声完全经验模态分解(CEEMDAN)与灰狼算法(GWO)优化的极限学习机(ELM)相结合的中介轴承故障诊断方法。利用CEEMDAN和相关系数-能量比-峭度准则(CEKC)对振动信号进行分解、筛选、重构;再提取重构信号的时域和频域特征构成特征矩阵;然后以平均错误率作为GWO的适应度值,对ELM的输入层与隐含层的权值和隐含层阈值进行优化后重新构建ELM;最后将特征矩阵输入ELM得到故障诊断结果。应用于中介轴承故障诊断中,ELM在GWO优化后故障诊断正确率有明显提升,其中45°方向传感器数据正确率由93.33%提升到99.17%。结果表明:该方法能够有效诊断中介轴承故障类型,表现出了较强的泛化能力。 相似文献
5.
针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法.利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值,筛选同时大于阈值的分量作为包含主要能量且与原信号更加相似的分量进行重构,实现信号的降噪和特征增强.利用结合精细复合多尺度散布熵(RCMDE)对降噪后的信号进行特征提取,充分提取反映振动信号不同时间尺度复杂程度的非线性特征组成特征向量.使用粒子群算法(PSO)优化的核极限学习机(KELM)对所提取的特征进行识别.通过实验验证,该模型10次测试的平均准确率可达95.04%.与其他特征提取和模式识别方法进行对比,所提方法具有更高的诊断准确率,为航空齿轮箱的故障诊断提供了新的方法. 相似文献
6.
针对振动信号中轴承故障特征信号微弱难以识别的问题,对通过试验采集到的内环故障、外环故障以及滚动体故障振动信号进行处理。采用最小二乘法和指数平滑法对振动信号进行预处理,利用EMD分离振动信号的局部特征,并根据IMF分量的信息熵增益比实现重构;采用ICA对混叠的振动信号进行分离,并对分离后的振动信号进行特征提取;采用遗传算法对多维振动特征参量进行降维,筛选出最优特征参量;采用遗传算法优化的极限学习机对轴承故障振动特征集进行识别,将常见的SVM、BP等诊断模型作为对比算法。试验结果表明:采用ICA能将混叠信号有效分离,实现故障信号的提取;遗传算法不仅能够实现最优特征的选择,同时能够对极限学习机算法进行有效优化,提升算法的诊断效果。优化的算法相比其它诊断识别方法性能较佳,使3种故障的平均诊断效果达到90%以上。 相似文献
7.
针对航空发动机中介轴承故障信号难于识别的问题,提出了1种融合k NN、SVM、CART、RF及GBDT 5种算法的会诊决策融合模型。基于中介轴承故障模拟试验台开展某型航空发动机中介轴承故障试验验证。采用EMD算法对采集的振动故障信号进行分解,提取IMF分量的模糊熵作为故障特征。利用建立的会诊模型对中介轴承内环故障、内环-滚动体耦合故障、正常、滚棒剥落、滚棒划伤5种不同状态进行识别。试验研究表明:会诊模型的故障诊断准确率高达92.5%,并表现出良好的泛化能力。 相似文献
8.
为了准确提取轴承的故障特征,提出了一种遗传算法(GA)参数优化的变分模态分解(VMD)结合1.5维谱的轴承故障诊断方法。首先以VMD方法中模态分量的包络熵值最小为优化目标,利用遗传算法对模态分量个数和二次惩罚因子进行优化,确定这两个能使VMD实现最优分解的输入参数。然后利用参数优化的VMD方法对仿真信号和轴承内环故障信号进行分解,并做各模态分量的1.5维谱图。参数优化的VMD分解得到了与仿真信号原始分量相符的4个模态分量,1.5维谱剔除了未参与二次相位耦合的10Hz频率分量。同时在1k Hz频率以下,运用本文方法提取了轴承内环故障特征频率的1至6倍频频率成分以及电机转频对它们的调制频率。由此表明,遗传算法参数优化的VMD可实现复杂信号的正确分解,1.5维谱可有效检测信号的二次相位耦合。同时,遗传算法参数优化的VMD结合1.5维谱能有效提取轴承内环故障特征,从而验证了本文方法的有效性和实用性。 相似文献
9.
10.
滚动轴承早期故障信号中的噪声成分会影响到故障特征的提取。为了提高含噪故障信号中滚动轴承早期故障特征提取的准确性,将基于自适应噪声的完备经验模态分解(CEEMDAN)用于滚动轴承振动信号的降噪中,并对降噪后的轴承故障信号进行双谱分析。结果表明:CEEMDAN可有效去除轴承振动信号中的低频噪声干扰,经CEEMDAN降噪后的不同轴承故障信号的双谱全局图存在明显差异,根据这些差异可在宏观上对不同轴承故障加以区分;通过经CEEMDAN降噪后的不同轴承故障信号的双谱细节图可以正确提取不同轴承故障的特征频率,从而实现对各轴承故障的有效诊断。CEEMDAN降噪结合双谱分析可为滚动轴承故障诊断提供一种新的有效方法。 相似文献
11.
针对传统共振解调方法易受噪声干扰导致故障特征提取效果不佳的问题,提出了一种基于Birge-Massart策略的阈值降噪与集成经验模态分解(EEMD)和快速谱峭度算法相结合的滚动轴承故障特征提取方法。对原始故障信号进行EEMD并采用峭度准则筛选出含有故障信息的本征模态函数(IMF)分量;采用Birge-Massart策略和快速谱峭度对故障信号进行滤波降噪;对滤波后信号进行Hilbert包络解调,提取轴承故障特征。采用该方法分别对仿真信号和实验信号进行特征提取,结果表明该方法可以有效提高故障信号信噪比,清晰准确地获取轴承内、外圈故障的频率特征。利用峭度因子准则筛选IMF分量能有效保留原始故障信号中的冲击特征,去除无关IMF分量的影响。 相似文献
12.
13.
采用经验模式分解方法(EMD),研究了发动机轴承的非平稳振动信号故障特征提取问题.计算机仿真结果证实了该方法的有效性;采用该方法提取了滚动轴承故障振动信号冲击特征,结果表明应用该方法能够准确、有效地获得轴承的冲击损伤特征,并且,经进一步分析,可确定冲击损伤故障失效模式. 相似文献
14.
基于经验模式分解法的航空发动机振动传感器故障诊断技术研究 总被引:2,自引:0,他引:2
在深入研究经验模式分解法基本理论的基础上,针对航空发动机振动传感器故障的时频特征,提出一种基于经验模式分解法的传感器故障诊断新方法.该方法的关键在于将含有传感器故障的航空发动机振动测试信号进行经验模式分解,利用这种方法的局部自适应特性和时频多分辨率分析将传感器输出信号的局部特性细化,使故障信息凸显出来.分析结果表明,该方法可以准确诊断传感器软、硬故障,有效降低误报率和漏报率,具有很好的应用价值. 相似文献
15.
郭淑卿 《中国民航学院学报》2008,26(4):30-33
Hilbert—Huang(HHT)变换方法由经验模态分解(EMD)及Hilbert变换两部分组成,能在时频域上正确地描述非平稳非线性信号的局部特征。但由于模态混淆,当信号组合分量的频率太接近时,HHT常不能正确分解窄带信号。针对这一情况,提出了EMD筛分过程的一种新的改进方法——频带滤波HHT方法,并运用此方法成功分解了双自由度线性体系反应的窄带信号。 相似文献
16.
17.
将支持向量机(SupportVectorMachine,简称SVM)、经验模态分解(EmpiricalModeDecomposition,简称EMD)方法和AR(Auto-Regressive,简称AR)模型相结合应用于滚动轴承故障诊断中。该方法首先对滚动轴承振动信号进行经验模态分解,将其分解为多个内禀模态函数(IntrinsicModeFunction,简称IMF)之和,然后对每一个IMF分量建立AR模型,最后提取模型的自回归参数和残差的方差作为故障特征向量,并以此作为SVM分类器的输入参数来区分滚动轴承的工作状态和故障类型。实验结果表明,该方法在小样本情况下仍能准确、有效地对滚动轴承的工作状态和故障类型进行分类,从而实现了滚动轴承故障诊断的自动化。 相似文献