首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.  相似文献   

2.
In large-scale systems of interest to solar physics, there is growing evidence that magnetic reconnection involves the formation of extended current sheets which are unstable to plasmoids (secondary magnetic islands). Recent results suggest that plasmoids may play a critical role in the evolution of reconnection, and have raised fundamental questions regarding the applicability of resistive MHD to various regimes. In collisional plasmas, where the thickness of all resistive layers remain larger than the ion gyroradius, simulations results indicate that plasmoids permit reconnection to proceed much faster than the slow Sweet-Parker scaling. However, it appears these rates are still a factor of ~10× slower than observed in kinetic regimes, where the diffusion region current sheet falls below the ion gyroradius and additional physics beyond MHD becomes crucially important. Over a broad range of interesting parameters, the formation of plasmoids may naturally induce a transition into these kinetic regimes. New insights into this scenario have emerged in recent years based on a combination of linear theory, fluid simulations and fully kinetic simulations which retain a Fokker-Planck collision operator to allow a rigorous treatment of Coulomb collisions as the reconnection electric field exceeds the runaway limit. Here, we present some new results from this approach for guide field reconnection. Based upon these results, a parameter space map is constructed that summarizes the present understanding of how reconnection proceeds in various regimes.  相似文献   

3.
Analytical studies of reconnection have, for the most part, been confined to steady and uniform current sheet geometries. In contrast to these implifications, natural phenomena associated with the presence of current sheets indicate highly non-uniform structure and time-varying behaviour. Examples include the violent outbursts of energy on the Sun known as solar flares, and magnetospheric phenomena such as flux transfer events, plasmoids, and auroral activity. Unlike the theoretical models, reconnection therefore occurs in a highly dynamic and structured plasma environment. In this article we review the mathematical tools and techniques which are available to formulate models capable of describing the effects of reconnection in such situations. We confine attention to variants of the reconnection model first discussed by Petschek in the 1960s, in view of its successful application in predicting and interpreting phenomena in the terrestrial magnetosphere. The analysis of Petschek-type reconnection is based on the equations of ideal magnetohydrodynamics (MHD), which describe the large-scale behaviour of the magnetic field and plasma flow outside the diffusion region, which we determine as a localised part of the current sheet in which reconnection is initiated. The approach we adopt here is to transform the MHD equations into a Lagrangian or so-called 'frozen-in' coordinate system. In this coordinate system, the equation of motion transforms into a set of coupled nonlinear equations, in which the presence of inhomogeneous magnetic fields and/or plasma flows gives rise to a term similar to that which appears in the study of the ordinary string equation in a non-homogeneous medium. As demonstrated here, this approach not only clarifies and highlights the effects of such non-uniformities, it also simplifies the solution of the original set of MHD equations. In particular, this is true for those types of problem in which the total pressure can be considered as a known quantity from the outset. To illustrate the method, we solve several 2D problems involving magnetic field and flow non-uniformities: reconnection in a stagnation-point flow geometry with antiparallel magnetic fields; reconnection in a Y-type magnetic field geometry with and without velocity shear across the current sheet; and reconnection in a force-free magnetic field geometry with field lines of the form xy = const. These case examples, chosen for their tractability, each incorporate some aspects of the field and flow geomtries encountered in solar-terrestrial applications, and they provide a starting point for further analytical as well as numerical studies of reconnection.  相似文献   

4.
Astrophysical fluids are turbulent a fact which changes the dynamics of many key processes, including magnetic reconnection. Fast reconnection of magnetic field in turbulent fluids allows the field to change its topology and connections. As a result, the traditional concept of magnetic fields being frozen into the plasma is no longer applicable. Plasma associated with a given magnetic field line at one instant is distributed along a different set of magnetic field lines at the next instant. This diffusion of plasmas and magnetic field is enabled by reconnection and therefore is termed “reconnection diffusion”. The astrophysical implications of this concept include heat transfer in plasmas, advection of heavy elements in interstellar medium, magnetic field generation etc. However, the most dramatic implications of the concept are related to the star formation process. The reason is that magnetic fields are dynamically important for most of the stages of star formation. The existing theory of star formation has been developed ignoring the possibility of reconnection diffusion. Instead, it appeals to the decoupling of mass and magnetic field arising from neutrals drifting in respect to ions entrained on magnetic field lines, i.e. through the process that is termed “ambipolar diffusion”. The predictions of ambipolar diffusion and reconnection diffusion are very different. For instance, if the ionization of media is high, ambipolar diffusion predicts that the coupling of mass and magnetic field is nearly perfect. At the same time, reconnection diffusion is independent of the ionization but depends on the scale of the turbulent eddies and on the turbulent velocities. In the paper we explain the physics of reconnection diffusion both from macroscopic and microscopic points of view, i.e. appealing to the reconnection of flux tubes and to the diffusion of magnetic field lines. We make use of the Lazarian and Vishniac (Astrophys. J. 517:700, 1999) theory of magnetic reconnection and show that this theory is applicable to the partially ionized gas. We quantify the reconnection diffusion rate both for weak and strong MHD turbulence and address the problem of reconnection diffusion acting together with ambipolar diffusion. In addition, we provide a criterion for correctly representing the magnetic diffusivity in simulations of star formation. We discuss the intimate relation between the processes of reconnection diffusion, field wandering and turbulent mixing of a magnetized media and show that the role of the plasma effects is limited to “breaking up lines” on small scales and does not affect the rate of reconnection diffusion. We address the existing observational results and demonstrate how reconnection diffusion can explain the puzzles presented by observations, in particular, the observed higher magnetization of cloud cores in comparison with the magnetization of envelopes. We also outline a possible set of observational tests of the reconnection diffusion concept and discuss how the application of the new concept changes our understanding of star formation and its numerical modeling. Finally, we outline the differences of the process of reconnection diffusion and the process of accumulation of matter along magnetic field lines that is frequently invoked to explain the results of numerical simulations.  相似文献   

5.
Astrophysical fluids have very large Reynolds numbers and therefore turbulence is their natural state. Magnetic reconnection is an important process in many astrophysical plasmas, which allows restructuring of magnetic fields and conversion of stored magnetic energy into heat and kinetic energy. Turbulence is known to dramatically change different transport processes and therefore it is not unexpected that turbulence can alter the dynamics of magnetic field lines within the reconnection process. We shall review the interaction between turbulence and reconnection at different scales, showing how a state of turbulent reconnection is natural in astrophysical plasmas, with implications for a range of phenomena across astrophysics. We consider the process of magnetic reconnection that is fast in magnetohydrodynamic (MHD) limit and discuss how turbulence—both externally driven and generated in the reconnecting system—can make reconnection independent on the microphysical properties of plasmas. We will also show how relaxation theory can be used to calculate the energy dissipated in turbulent reconnecting fields. As well as heating the plasma, the energy dissipated by turbulent reconnection may cause acceleration of non-thermal particles, which is briefly discussed here.  相似文献   

6.
Magnetic reconnection is a fundamental plasma physics process in which ideal-MHD??s frozen-in constraints are broken and the magnetic field topology is dramatically re-arranged, which often leads to a violent release of the free magnetic energy. Most of the magnetic reconnection research done to date has been motivated by the applications to systems such as the solar corona, Earth??s magnetosphere, and magnetic confinement devices for thermonuclear fusion. These environments have relatively low energy densities and the plasma is adequately described as a mixture of equal numbers of electrons and ions and where the dissipated magnetic energy always stays with the plasma. In contrast, in this paper I would like to introduce a different, new direction of research??reconnection in high energy density radiative plasmas, in which photons play as important a role as electrons and ions; in particular, in which radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. This research is motivated in part by rapid theoretical and experimental advances in High Energy Density Physics, and in part by several important problems in modern high-energy astrophysics. I first discuss some astrophysical examples of high-energy-density reconnection and then identify the key physical processes that distinguish them from traditional reconnection. Among the most important of these processes are: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and radiative resistivity); and, at the most extreme end??QED effects, including pair creation. The most notable among the astrophysical applications are situations involving magnetar-strength fields (1014?C1015 G, exceeding the quantum critical field B ??4×1013 G). The most important examples are giant flares in soft gamma repeaters (SGRs) and magnetic models of the central engines and relativistic jets of Gamma Ray Bursts (GRBs). The magnetic energy density in these environments is so high that, when it is suddenly released, the plasma is heated to ultra-relativistic temperatures. As a result, electron-positron pairs are created in copious quantities, dressing the reconnection layer in an optically thick pair coat, thereby trapping the photons. The plasma pressure inside the layer is then dominated by the combined radiation and pair pressure. At the same time, the timescale for radiation diffusion across the layer may, under some conditions, still be shorter than the global (along the layer) Alfvén transit time, and hence radiative cooling starts to dominate the thermodynamics of the problem. The reconnection problem then becomes essentially a radiative transfer problem. In addition, the high pair density makes the reconnection layer highly collisional, independent of the upstream plasma density, and hence radiative resistive MHD applies. The presence of all these processes calls for a substantial revision of our traditional physical picture of reconnection when applied to these environments and thus opens a new frontier in reconnection research.  相似文献   

7.
The heating and acceleration of ions during magnetic reconnection relevant to coronal heating and flares is explored via particle-in-cell (PIC) simulations and analytic modeling. We show that the dominant heating mechanism of sub-Alvénic ions during reconnection with a guide field, the case of greatest relevance to the corona, results from pickup behavior during the entry into reconnection exhausts, which produces effective thermal speeds of the order of the Alfvén velocity based on the reconnecting magnetic field. There is a mass-to-charge (M/Q) threshold for pickup behavior that favors the heating of high-M/Q ions. Ions below the threshold gain little energy beyond that associated with convective flow. PIC simulations with protons and alphas confirm the pickup threshold. The enhanced heating of high M/Q ions is consistent with observations of abundance enhancements of such ions in impulsive flares. In contrast to anti-parallel reconnection, the temperature increment during ion pickup is dominantly transverse, rather than parallel, to the local magnetic field. The simulations reveal the dominance of perpendicular heating, which is also consistent with observations. We suggest that the acceleration of ions to energies well above that associated with the Alfvén speed takes place during the interaction with many magnetic islands, which spontaneously develop during 3-D guide-field reconnection. The exploration of particle acceleration in a full 3-D multi-island system remains computationally intractable. Instead we explore ion acceleration in a multi-current layer system with low initial β. Ion energy gain takes place due to Fermi reflection in contracting and merging magnetic islands. Particle acceleration continues until the available magnetic free-energy is significantly depleted so that the pressure of energetic ions approaches that of the reconnecting field. Depending on the strength of the ambient guide field and in spite of the low initial plasma β, the dominance of parallel heating can cause significant regions of the plasma to exceed the marginal firehose condition.  相似文献   

8.
Lapenta  Giovanni 《Space Science Reviews》2003,107(1-2):167-174
A new paradigm is suggested for 3D magnetic reconnection where the interaction of reconnection processes with current aligned instabilities plays an important role. According to the new paradigm, the initial equilibrium is rendered unstable by current aligned instabilities (lower-hybrid drift instability first, drift-kink instability later) and the non-uniform development of kinking modes leads to a compression of magnetic field lines in certain locations and a rarefaction in others. The areas where the flow is compressional are subjected to a driven reconnection process. In the present paper we illustrate this series of events with a selection of simulation results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Berchem  J.  Fuselier  S.A.  Petrinec  S.  Frey  H.U.  Burch  J.L. 《Space Science Reviews》2003,109(1-4):313-349
The IMAGE mission provides a unique opportunity to evaluate the accuracy of current global models of the solar wind interaction with the Earth's magnetosphere. In particular, images of proton auroras from the Far Ultraviolet Instrument (FUV) onboard the IMAGE spacecraft are well suited to support investigations of the response of the Earth's magnetosphere to interplanetary disturbances. Accordingly, we have modeled two events that occurred on June 8 and July 28, 2000, using plasma and magnetic field parameters measured upstream of the bow shock as input to three-dimensional magnetohydrodynamic (MHD) simulations. This paper begins with a discussion of images of proton auroras from the FUV SI-12 instrument in comparison with the simulation results. The comparison showed a very good agreement between intensifications in the auroral emissions measured by FUV SI-12 and the enhancement of plasma flows into the dayside ionosphere predicted by the global simulations. Subsequently, the IMAGE observations are analyzed in the context of the dayside magnetosphere's topological changes in magnetic field and plasma flows inferred from the simulation results. Finding include that the global dynamics of the auroral proton precipitation patterns observed by IMAGE are consistent with magnetic field reconnection occurring as a continuous process while the IMF changes in direction and the solar wind dynamic pressure varies. The global simulations also indicate that some of the transient patterns observed by IMAGE are consistent with sporadic reconnection processes. Global merging patterns found in the simulations agree with the antiparallel merging model, though locally component merging might broaden the merging region, especially in the region where shocked solar wind discontinuities first reach the magnetopause. Finally, the simulations predict the accretion of plasma near the bow shock in the regions threaded by newly open field lines on which plasma flows into the dayside ionosphere are enhanced. Overall the results of these initial comparisons between global MHD simulation results and IMAGE observations emphasize the interplay between reconnection and dynamic pressure processes at the dayside magnetopause, as well as the intricate connection between the bow shock and the auroral region.  相似文献   

10.
This review considers the theory of the magnetic field line reconnection and its application to the problem of the interaction between the solar wind and the Earth's magnetosphere. In particular, we discuss the reconnection models by Sonnerup and by Petschek (for both incompressible and compressible plasmas, for the asymmetric and nonsteady-state cases), the magnetic field annihilation model by Parker; Syrovatsky's model of the current sheet; and Birn's and Schindler's solution for the plasma sheet structure. A review of laboratory and numerical modelling experiments is given.Results concerning the field line reconnection, combined with the peculiarities of the MHD flow, were used in investigating the solar wind flow around the magnetosphere. We found that in the presence of a frozen-in magnetic field, the flow differs significantly from that in a pure gas dynamic case; in particular, at the subsolar. part of the magnetopause a stagnation line appears (i.e., a line along which the stream lines are branching) instead of a stagnation point. The length and location of the stagnation line determine the character of the interaction of the solar wind with the Earth's magnetosphere. We have developed the theory of that interaction for a steady-state case, and compare the results of the calculations with the experimental data.In the last section of the review, we propose a qualitative model of the solar wind — the Earth's magnetosphere interaction in the nonsteady-state case on the basis of the solution of the problem of the spontaneous magnetic field line reconnection.  相似文献   

11.
The concept of reconnection is found in many fields of physics with the closest analogue to magnetic reconnection being the reconnection of vortex tubes in hydrodynamics. In plasmas, magnetic reconnection plays an important role in release of energy associated with the magnetic shear into particle energy. Although most studies to date have focused on 2D reconnection, the availability of 3D petascale kinetic simulations have brought the complexity of 3D reconnection to the forefront in collisionless reconnection studies. Here we briefly review the latest advances in 2D and compare and contrast the results with recent 3D studies that address role of anomalous transport in reconnection, effects of turbulence on the rate and structure, among others. Another outcome of recent research is the realization of a deeper link between turbulence and reconnection where the common denominator is the generic formation of electron scale sheets which dissipate the energy through reconnection. Finally, we close the review by listing some of the major outstanding problems in reconnection physics.  相似文献   

12.
Echim  M.M.  Lemaire  J.F. 《Space Science Reviews》2000,92(3-4):565-601
Plasma interaction at the interface between the magnetosheath and magnetosphere has been extensively studied during recent years. As a consequence various theoretical models have emerged. The impulsive penetration mechanism initially proposed by Lemaire and Roth as an alternative approach to the steady state reconnection, is a non-stationary model describing the processes which take place when a 3-D solar wind plasma irregularity interacts with the outer regions of the Earth's magnetosphere. In this paper we are reviewing the main features of the impulsive penetration mechanism and the role of the electric field in driving impulsive events. An alternative point of view and the controversy it has raised are discussed. We also review the numerical codes developed to simulate the impulsive transport of plasma across the magnetopause. They have illustrated the relationship between the magnetic field distribution and the convection of solar-wind plasma inside the magnetosphere and brought into perspective non-stationary phenomena (like instabilities and waves) which were not explicitly integrated in the early models of impulsive penetration. Numerical simulations devoted to these processes cover a broad range of approximations, from ideal MHD to hybrid and kinetic codes. The results show the limitation of these theories in describing the full range of phenomena observed at the magnetopause and magnetospheric boundary layers.  相似文献   

13.
M. Ugai 《Space Science Reviews》2001,95(1-2):601-611
Large dissipative events, such as solar flares and geomagnetic substorms, may result from sudden onset of fast (explosive) magnetic reconnection. Hence, it is a long-standing problem to find the physical mechanism that makes magnetic reconnection explosive; in particular, how can the fast magnetic reconnection explosively evolve in space plasmas? In this respect, we have proposed the spontaneous fast reconnection model as a nonlinear instability that grows by the positive feedback between plasma microphysics (anomalous resistivity) and macrophysics (global reconnection flow). On the basis of MHD simulations, we demonstrate for a variety of physical situations that the fast reconnection mechanism involving slow shocks in fact evolves explosively as a nonlinear instability and is sustained quasi-steadily on the nonlinear saturation phase. Also, distinct plasma processes, such as large-scale plasmoid propagation, magnetic loop development and loop-top heating, and asymmetric fast reconnection evolution, directly result from the spontaneous fast reconnection model. Obviously, MHD simulations are very useful in understanding the basic physics of explosive fast reconnection evolution in space plasmas. However, they cannot treat the details of microphysics near an X neutral point, which should be precisely studied in the coming 21st century.  相似文献   

14.
Two particular examples are considered of astrophysical objects containing a highly conducting tenuous plasma with an excess magnetic energy supplied by an external source. The first example is the solar corona, whose magnetic field is continuously distorted by footpoint shuffling due to photospheric motions. The second case it an extragalactic jet extending from a galactic nucleus with an immersed magnetic field, and which is perturbed by variations in the pressure of the external medium. In both cases it is assumed that the system tends towards its lowest magnetic energy equilibrium via magnetic reconnection, thus providing a fast release of injected magnetic energy. Explicit relations between the characteristics of the external driver and the magnetic energy dissipation rate in these objects have been obtained. The relevance of this mechanism for heating the solar corona and maintaining radio emission from extragalactic jets is then. discussed by comparing these results with observational data.  相似文献   

15.
We review progress in understanding the dynamics of a typical magnetic reconnection layer by describing the historical development of theory and the recent findings and discoveries in space and laboratory plasmas. The emphasis is on the dynamics of electrons moving with respect to ions in the collision-free neutral sheet. We make a detailed comparison of experimental results from the Magnetic Reconnection Experiment (MRX) with those from theory and numerical simulations. The collaboration between space and laboratory scientists on reconnection research has recently reached a point where we can compare measurements of the reconnection layer profile in detail with support from numerical simulations. In spite of the large difference in physical scales by 106?C107, we find remarkable commonalities in the features of the magnetic reconnection region in laboratory and magnetospheric plasmas. A newly planned laboratory experiment, in which a current sheet is swept in the way a magnetosphere current sheet crosses space satellites, is also described.  相似文献   

16.
We present grid-adaptive numerical simulations of magnetized plasma jets, modeled by means of the compressible magnetohydrodynamic equations. The Adaptive Mesh Refinement strategy makes it possible to investigate long-term jet dynamics where both large-scale and small-scale effects are at play. We extend recent findings for uniformly magnetized, periodic shear layers to planar and fully 3D extended jet segments. The jet lengths cover multiple, typically 10, axial wavelengths of the fastest growing Kelvin–Helmholtz (KH) like modes. The dominant linear MHD instabilities of the jet flows are quantified by means of MHD spectroscopic analysis. In cases characterized by sonic Mach numbers about unity and large plasma beta values, both single and double shear layers (planar jets) manifest self-organizing trends to large scales, e.g. by continuous pairing/merging between co-rotating vortices, simultaneously with the introduction of small-scale features by magnetic reconnection events. The vortices form as a result of KH unstable shear-flow layers, and their coalescence arises from the growth of subharmonic modes at multiple wavelengths of the fastest growing KH instability. In extended two-dimensional jet segments, we investigate how varying jet width alters this coalescence process occurring at both edges, e.g. by introducing Batchelor-like coupling between counter-rotating vortices formed at opposing weakly magnetized, close shear layers. Finally, periodic segments of supersonic magnetized jets are simulated in two- and three-dimensional cases, which are characterized by violent shock-dominated transients.  相似文献   

17.
18.
There have been many significant advances in understanding magnetic field reconnection as a result of improved space measurements and two-dimensional computer simulations. While reviews of recent work have tended to focus on symmetric reconnection on ion and larger spatial scales, the present review will focus on asymmetric reconnection and on electron scale physics involving the reconnection site, parallel electric fields, and electron acceleration.  相似文献   

19.
We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号