首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galactic and Extragalactic Magnetic Fields   总被引:1,自引:0,他引:1  
The current state of research of the Galactic magnetic field is reviewed critically. The average strength of the total field derived from radio synchrotron data, under the energy equipartition assumption, is 6±2 G locally and about 10±3 G at 3 kpc Galactic radius. These values agree well with the estimates using the locally measured cosmic-ray energy spectrum and the radial variation of protons derived from -rays. Optical and synchrotron polarization data yield a strength of the local regular field of 4±1 G, but this value is an upper limit if the field strength fluctuates within the beam or if anisotropic fields are present. Pulsar rotation measures, on the other hand, give only 1.4±0.2 G, a lower limit if fluctuations in regular field strength and thermal electron density are anticorrelated along the pathlength. The local regular field may be part of a `magnetic arm between the optical arms. However, the global structure of the regular Galactic field is not yet known. Several large-scale field reversals in the Galaxy were detected from rotation measure data, but a similar phenomenon was not observed in external galaxies. The Galactic field may be young in terms of dynamo action so that reversals from the chaotic seed field are preserved, or a mixture of dynamo modes causes the reversals, or the reversals are signatures of large-scale anisotropic field loops. The Galaxy is surrounded by a thick disk of radio continuum emission of similar extent as in edge-on spiral galaxies. While the local field in the thin disk is of even symmetry with respect to the plane (quadrupole), the global thick-disk field may be of dipole type. The Galactic center region hosts highly regular fields of up to milligauss strength which are oriented perpendicular to the plane. A major extension of the data base of pulsar rotation measures and Zeeman splitting measurements is required to determine the structure of the Galactic field. Further polarization surveys of the Galactic plane at wavelengths of 6 cm or shorter may directly reveal the fine structure of the local magnetic field.  相似文献   

2.
We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The “signal generators” of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurements provide unique information on turbulence in the ISM as well as the mean plasma properties such as density and magnetic field strength. Radio propagation observations can provide input to the major contemporary questions on the nature of ISM turbulence, such as its dissipation mechanisms and the processes responsible for generating the turbulence on large spatial scales. Measurements of the large scale Galactic magnetic field via Faraday rotation provide unique observational input to theories of the generation of the Galactic field.  相似文献   

3.
We present an overview of how the principal physical properties of magnetic flux which emerges from the toroidal fields in the tachocline through the turbulent convection zone to the solar surface are linked to solar activity events, emphasizing the effects of magnetic field evolution and interaction with other magnetic structures on the latter. We compare the results of different approaches using various magnetic observables to evaluate the probability of flare and coronal mass ejection (CME) activity and forecast eruptive activity on the short term (i.e. days). Then, after a brief overview of the observed properties of CMEs and their theoretical models, we discuss the ejecta properties and describe some typical magnetic and composition characteristics of magnetic clouds (MCs) and interplanetary CMEs (ICMEs). We review some individual examples to clarify the link between eruptions from the Sun and the properties of the resulting ejecta. The importance of a synthetic approach to solar and interplanetary magnetic fields and activity is emphasized.  相似文献   

4.
This paper reviews solar flows and magnetic fields observed at the photospheric level. We first present the context in which these observations are performed. We describe the various temporal and spatial scales involved, and the coupling between them. Then we present small-scale flows, mainly supergranulation and flows around active regions. Flows at the global scale are then reviewed, again with emphasis on the flows, i.e. differential rotation, torsional oscillation and meridional circulation. In both small- and global-scale we discuss the coupling between flow fields and magnetic field and give an overview of observational techniques. Finally, the possible connection between studies of solar activity and stellar activity is briefly discussed.  相似文献   

5.
It is only within the last 5 years that we have learned how to recognize the unambiguous signature of magnetic reconnection in the solar wind in the form of roughly Alfvénic accelerated plasma flows embedded within bifurcated magnetic field reversal regions (current sheets). This paper provides a brief overview of what has since been learned about reconnection in the solar wind from both single and multi-spacecraft observations of these so-called reconnection exhausts.  相似文献   

6.
Direct numerical simulations of the geodynamo and other planetary dynamos have been successful in reproducing the observed magnetic fields. We first give an overview on the fundamental properties of planetary magnetism. We review the concepts and main results of planetary dynamo modeling, contrasting them with the solar dynamo. In planetary dynamos the density stratification plays no major role and the magnetic Reynolds number is low enough to allow a direct simulation of the magnetic induction process using microscopic values of the magnetic diffusivity. The small-scale turbulence of the flow cannot be resolved and is suppressed by assuming a viscosity far in excess of the microscopic value. Systematic parameter studies lead to scaling laws for the magnetic field strength or the flow velocity that are independent of viscosity, indicating that the models are in the same dynamical regime as the flow in planetary cores. Helical flow in convection columns that are aligned with the rotation axis play an important role for magnetic field generation and forms the basis for a macroscopic α-effect. Depending on the importance of inertial forces relative to rotational forces, either dynamos with a dominant axial dipole or with a small-scale multipolar magnetic field are found. Earth is predicted to lie close to the transition point between both classes, which may explain why the dipole undergoes reversals. Some models fit the properties of the geomagnetic field in terms of spatial power spectra, magnetic field morphology and details of the reversal behavior remarkably well. Magnetic field strength in the dipolar dynamo regime is controlled by the available power and found to be independent of rotation rate. Predictions for the dipole moment agree well with the observed field strength of Earth and Jupiter and moderately well for other planets. Dedicated dynamo models for Mercury, Saturn, Uranus and Neptune, which assume stably stratified layers above or below the dynamo region, can explain some of the unusual field properties of these planets.  相似文献   

7.
Some current topics in the theory of pulsar magnetospheres and their emission are reviewed. The mode of plasma supply and its consequences for structure of planetary and stellar magnetospheres is discussed. In the pulsar case, the plasma is supplied by electrical forces, in contrast to all other known examples. The resulting theories of particle acceleration along polar field lines are then reviewed, and the total energization of the charge separated plasma is summarized, when pair creation is absent. The effects of pair creation are reviewed using models of the resulting steady and unsteady flows, when the polar zones of the pulsar emit either electrons or ions. The application of these theories of acceleration and plasma supply to pulsars is discussed, with particular attention paid to the total amount of electron-positron plasma created and its momentum distribution. Qualitative agreement is shown between the spatial structure of the relativistically outflowing plasma described in one version of these models and the morphology of pulsar wave forms. Various aspects of radiation emission and transport are summarized, based on the polar current flow model with pair creation, and the phenomenon of marching subpulses is discussed. The corotation beaming and the relativistically expanding current sheet models for pulsar emission are also discussed briefly, and the paper concludes with a brief discussion of the relation between the theories of polar flow with pair plasma and the problem of the energization of the Crab Nebula.Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.  相似文献   

8.
Simnett  G.M. 《Space Science Reviews》2001,99(1-4):231-242
This article reviews observations on the large-scale distribution of various constituents of the interstellar medium. We subsequently discuss several theoretical issues related directly to Galactic cosmic rays: the Galactic hydrostatic equilibrium, the Parker instability of the Galactic disk, and the problem of the origin of the large-scale Galactic magnetic field.  相似文献   

9.
Shear flow instabilities are an important aspect of hydrodynamic studies. The present review article discusses the role of an ambient magnetic field which both modifies the Kelvin-Helmholtz instability and may introduce new types of magnetohydrodynamic waves and instabilities. A brief overview of magnetospheric pulsations is presented with an emphasis on the long-period resonant Alfv??n waves associated with the high speed solar wind. The spatio-temporal evolution of magnetically modified shear flow instabilities in various space plasma structures is addressed. A distinction between convective and absolute instabilities is necessary for proper understanding of theory and correct interpretation of the observations. Finally, it is shown how incompressible Alfv??nic disturbances may become unstable in a compressible flow in the absence of any shear. An application to coronal loops is presented.  相似文献   

10.
The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed.  相似文献   

11.
Here we review the efforts of a number of recent results that use old tracers to understand the build up of the Galaxy. Details that lead directly to using these old tracers to measure distances are discussed. We concentrate on the following: (1) the structure and evolution of the Galactic bulge and inner Galaxy constrained from the dynamics of individual stars residing therein; (2) the spatial structure of the old Galactic bulge through photometric observations of RR Lyrae-type stars; (3) the three-dimensional structure, stellar density, mass, chemical composition, and age of the Milky Way bulge as traced by its old stellar populations; (4) an overview of RR Lyrae stars known in the ultra-faint dwarfs and their relation to the Galactic halo; and (5) different approaches for estimating absolute and relative cluster ages.  相似文献   

12.
The Solar Dynamo   总被引:1,自引:0,他引:1  
It is generally accepted that the strong toroidal magnetic fields that emerge through the solar surface in sunspots and active regions are formed by the action of differential rotation on a poloidal field, and then stored in or near the tachocline at the base of the Sun’s convection zone. The problem is how to explain the generation of a reversed poloidal field from this toroidal flux—a process that can be parametrised in terms of an α-effect related to some form of turbulent helicity. Here we first outline the principal patterns that have to be explained: the 11-year activity cycle, the 22-year magnetic cycle and the longer term modulation of cyclic activity, associated with grand maxima and minima. Then we summarise what has been learnt from helioseismology about the Sun’s internal structure and rotation that may be relevant to our subject. The ingredients of mean-field dynamo models are differential rotation, meridional circulation, turbulent diffusion, flux pumping and the α-effect: in various combinations they can reproduce the principal features that are observed. To proceed further, it is necessary to rely on large-scale computation and we summarise the current state of play.  相似文献   

13.
Synchrotron radiation is generated throughout the Milky Way. It fills the sky, and carries with it the imprint of the magnetic field at the point of origin and along the propagation path. Observations of the diffuse polarized radio emission should be able to provide information on Galactic magnetic fields with detail matching the angular resolution of the telescope. I review what has been learned from existing data, but the full potential cannot be realized from current observations because they do not adequately sample the frequency structure of the polarized emission, or they lack information on large-scale structure. I discuss three surveys, each overcoming one of these limitations, and show how use of complementary data on other ISM tracers can help elucidate the role of magnetic fields in interstellar processes. The focus of this review is on the small-scale field, on sizes comparable with the various forms of interaction of stars with their surroundings. The future is bright for this field of research as new telescopes are being built, designed for the survey mode of observation, equipped for wideband, multichannel polarization observations.  相似文献   

14.
In light of assessing the habitability of Mars, we examine the impact of the magnetic field on the atmosphere. When there is a magnetic field, the atmosphere is protected from erosion by solar wind. The magnetic field ensures the maintenance of a dense atmosphere, necessary for liquid water to exist on the surface of Mars. We also examine the impact of the rotation of Mars on the magnetic field. When the magnetic field of Mars ceased to exist (about 4 Gyr ago), atmospheric escape induced by solar wind began. We consider scenarios which could ultimately lead to a decrease of atmospheric pressure to the presently observed value of 7 mbar: a much weaker early martian magnetic field, a late onset of the dynamo, and high erosion rates of a denser early atmosphere.  相似文献   

15.
16.
We discuss the solar wind parameters measured in the distant heliosphere from the Voyager 2 spacecraft. Periodic variations in the speed of the wind observed at roughly the solar rotation period may correspond to interaction regions between slower and faster streams of wind. Since the interplanetary magnetic field is enhanced in such regions, they are important for the study of modulation of cosmic rays. Unfortunately, direct observation of the enhanced magnetic field from Voyager 2 has been made difficult by spacecraft-associated noise since 1989.  相似文献   

17.
As the Ulysses spacecraft approaches its first pass under the south pole of the sun, it is an appropriate time to review our current knowledge and predictions regarding the three dimensional behaviour of the heliospheric magnetic field, in particular at high heliographic latitudes. Optical techniques for measuring the photospheric magnetic field and observations of coronal brightness structures provide indications of the behaviour of the source of the heliospheric field in the corona. As the coronal fields are carried out into the heliosphere by the solar wind, from Parker's model we would expect that the spiral field observed in the equatorial plane should gradually unwind with latitude leading to open, approximately radial, field lines over the polar regions. Predictions of departures from, and models extending this simple picture are discussed. Both the Pioneer and Voyager spacecraft have spent brief periods in the regions above the maximum latitude of the heliospheric current sheet-relevant results from these missions are reviewed as well as results from the early stages of the out-of-ecliptic phase of the Ulysses mission. The configuration of the coronal magnetic field exhibits a strong dependence on the phase of the solar activity cycle. While the forthcoming Ulysses polar passes take place near to solar minimum, the different conditions which might be encountered on a second orbit of the sun at solar maximum are described.  相似文献   

18.
Long-lived, stable jets are observed in a wide variety of systems, from protostars, through Galactic compact objects to active galactic nuclei (AGN). Magnetic fields play a central role in launching, accelerating, and collimating the jets through various media. The termination of jets in molecular clouds or the interstellar medium deposits enormous amounts of mechanical energy and momentum, and their interactions with the external medium, as well, in many cases, as the radiation processes by which they are observed, are intimately connected with the magnetic fields they carry. This review focuses on the properties and structures of magnetic fields in long-lived jets, from their launch from rotating magnetized young stars, black holes, and their accretion discs, to termination and beyond. We compare the results of theory, numerical simulations, and observations of these diverse systems and address similarities and differences between relativistic and non-relativistic jets in protostellar versus AGN systems. On the observational side, we focus primarily on jets driven by AGN because of the strong observational constraints on their magnetic field properties, and we discuss the links between the physics of these jets on all scales.  相似文献   

19.
多飞行器的分布式优化研究现状与展望   总被引:1,自引:1,他引:0  
姜霞  曾宪琳  孙健  陈杰 《航空学报》2021,42(4):524551-524551
航空领域的多个飞行器协同搜救、区域监控、编队飞行等实际任务具有个体数量多、信息分散、任务指标复杂等特点,分布式优化是实现上述任务中多飞行器有效协同的重要保证,具有重要的理论意义和显著的应用价值。从优化任务的问题模型、研究框架和典型优化算法3个方面对分布式优化的研究现状进行了概述。根据不同的优化问题,从无约束的分布式凸优化、集合约束的分布式凸优化、不等式约束的分布式凸优化和分布式非凸优化这4个方面对分布式优化领域典型的研究成果进行了概述,并讨论了分布式优化研究的共性难点问题,对未来的分布式优化方向进行了展望。  相似文献   

20.
Gosling  J.T.  Forsyth  R.J. 《Space Science Reviews》2001,97(1-4):98-98
We have identified 20 coronal mass ejections, or CMEs, in the solar wind in the Ulysses data obtained between S30° and S75° during the second polar orbit. Unlike CME-driven disturbances observed at high latitudes during Ulysses’ first polar orbit, these disturbances had plasma and magnetic field characteristics similar to those observed in the ecliptic plane near 1 AU when one allows for evolution with heliocentric distance. Here we provide a brief overview of CME observations at high latitudes both close to and far from the Sun, with emphasis on the recent Ulysses measurements on the rising portion of solar cycle 23. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号