共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
高强度纤维缠绕增强的软壁机匣是大型航空发动机轻质风扇机匣的主要选型之一。针对大型航空发动机软壁包容机匣的总体设计思路,从结构特点、数值分析技术、试验方法、纤维性能考核等方面研究了其包容性分析设计的方法。分析了软壁风扇包容机匣的结构特点,较适用于工程、机理分析地连续介质模型和纱线模型,得出了旋转打靶试验能有效考虑关键因素,而部件包容试验则能初步验证包容能力,数值仿真与部件试验相结合能快速掌握软壁机匣的包容性设计方法。此外,软壁机匣外层纤维织物的拉伸、剪切、摩擦、应变率效应、抗老化测试等性能测试,可为选取优良的纤维织物以及发展适用的材料模型提供参考和依据。 相似文献
3.
本文提出对风扇机匣应进行行波振动分析, 作出频率响应曲线, 进行限幅设计。在分析过程中, 根据结构特点给出了模型的简化方法, 采取周期对称模型, 并根据周期对称的理论结合激振力的特点给出了旋转脉动激励在周期对称模块中的施加方法。 相似文献
4.
5.
针对异常载荷下,航空发动机宽弦风扇叶片的叶尖与机匣刮蹭变形及损伤特征缺乏数据支持,而传统理论计算方法存在较大的误差问题,建立了宽弦风扇叶片叶尖刮蹭显式动力学分析模型,采用宽弦风扇叶片与机匣刮蹭试验数据,对分析模型的计算精度进行了验证。基于分析模型进行了仿真参数的敏感度分析,得到了叶片与机匣刮蹭后叶片变形及机匣损伤规律。研究结果表明:叶尖伸长量对转子转速非常敏感,叶尖径向伸长量增加速率远大于转速增加值,因此在叶片设计中应考虑到风扇叶片极限转速下叶尖伸长量。同时需要选取合理的扭转角度以满足叶片安全性和气动性能的要求。在风扇机匣包容区设计中应主动考虑异常载荷的影响,增大安全性设计域度;设计合理的耐磨层材料参数,减小风扇叶片对其冲击损伤。采用该方法可以提高叶尖间隙控制精度,减小刮蹭对叶片和机匣造成的损伤。 相似文献
6.
国外航空发动机风扇叶片及其成形技术 总被引:1,自引:0,他引:1
现代航空发动机正朝着增加推力,减轻重量,降低油耗和减少噪音的方向发展,涡轮风扇发动机正是适应这一要求而发展起来的。 风扇叶片是涡轮风扇发动机的重要零件,其叶身长、叶弦宽、形状复杂(扭角大、实心叶片的叶身又往往设计有一个或多个中间阻尼凸台)。因此,成形难度大,极大地影响了发动机的重量和制造成本。目前,风扇叶片的成形方法已成为发动机制造的关键技术之一。 相似文献
7.
8.
本文简要介绍了国外铸钛机匣在航空发动机上的应用概况,较全面地分析了铸钛机匣的结构特点,质量控制与保证,以及可靠性与经济性。可以认为精铸钛机匣在航空发动机上的应用前景是十分广阔的。 相似文献
9.
为保障飞行安全,航空发动机机匣需具有足够的抗冲击能力以包容高速旋转状态下丢失的叶片。针对某型涡扇发动机对开式风扇机匣包容性评估需求,提出了1种结合真实机匣打靶试验和有限元分析评估机匣包容能力的方法。通过使用真实机匣和真实叶片进行打靶试验获得风扇机匣的冲击损伤情况,并基于ANSYS/LS-DYNA进行了瞬态动力学有限元分析。结果表明:采用Johnson-Cook模型预测的机匣伤形状、尺寸以及叶片残余速度均与试验结果接近,验证了数值分析方法的准确性。采用验证过的数值分析方法开展旋转状态下机匣的包容性评估,发现由于撞击姿态差异和失效模式转变,风扇机匣可以包容以100%工作转速飞出的叶片,但机匣出现长裂纹,接近临界包容状态。所提出的方法可以在不具备部件包容试验条件的情况下,以较方便的形式对机匣包容能力可靠评估。 相似文献
10.
航空发动机机匣包容性研究综述 总被引:3,自引:12,他引:3
从包容定义、机匣种类、设计概念和方法、试验验证、数值仿真、机匣和叶片破坏方式等方面,详细阐述航空发动机包容机匣的现状和发展趋势.简述发展大涵道比涡扇发动机对轻质高包容能力风扇机匣的需求,评述在役及在研大飞机发动机风扇机匣的设计方案,介绍国外从事纤维增强复合材料机匣包容能力研究的情况.并分别从结构改进、低成本复合材料风扇机匣制造技术、全复合材料机匣缠绕规律、耐高温复合材料机匣、叶片包容过程的多学科整机耦合响应分析、智能包容机匣等方面,简要论述我国高推质比发动机和大飞机发动机包容机匣的研制方向. 相似文献
11.
为了研究某型发动机机匣的包容性,在立式旋转试验器上进行了包容性试验。在进行叶片飞断转速控制时,提出1 种改
进的预置切口的方法,并通过拉伸试验和有限元法确定了切口预留面积。考虑了相邻叶片对飞断叶片的影响,制定了试验方案,获
得了叶片的飞断转速、断叶与机匣的撞击影像、转子的冲击载荷、试验过程中的轴心轨迹和机匣受到撞击后的动态响应。结果表明:
涡轮叶片在5620 r/min 转速下飞断,准确控制在预定范围内,该型机匣能够包容失效叶片,测试方案合理有效,可为航空发动机机
匣包容性试验提供参考。 相似文献
12.
在航空发动机包容试验中,为满足叶片在根部失效的要求,设计了基于爆破切割技术的叶片根部飞断试验方法。通过平板静态爆破试验确定了柔爆索的切割能力,并使用柔爆索进行了真实叶片的静态爆破试验。在MTS拉伸试验机上对爆破切割后的损伤叶片进行了静拉伸试验,确定了损伤叶片的剩余强度为50~56 kN。按照静态爆破试验获得的开槽尺寸在叶片根部开槽并敷设柔爆索,采用树脂胶固定后,在立式转子试验器上采用遥控触发的方式进行了真实叶片旋转状态下的飞断试验。结果表明:在叶片两侧加工4 mm深沟槽并敷设柔爆索爆破后,叶片被柔爆索切割,并在预定飞断转速下失效飞出。飞断截面断口显示叶片中段被柔爆索的金属射流完全切断,前后缘在离心载荷作用下拉断,爆破作用没有对叶片产生附加动能,成功实现了叶片在预定转速下的根部断裂失效。 相似文献
13.
14.
15.
风扇机匣材料应用现状与发展 总被引:2,自引:0,他引:2
大涵道比涡扇发动机主要用于大型客运和货运运输飞机动力装置,其明显外观特点之一是具有较大的风扇进口迎风面积.发动机迎风面积的增加可以大幅提高发动机的进气量和发动机推力,但同时也增加了发动机吸入外来物体,打伤风扇叶片的可能.随着涵道比的增大,风扇转子叶片的尺寸也相应增大,大尺寸叶片在高速、高压的恶劣环境下工作,受到飞鸟、冰块、砂石、轮胎碎片、地面杂物等外来物撞击或因为叶片材料疲劳等原因导致意外断裂脱离时,就会在巨大的离心力作用下高速撞击到风扇机匣上,若机匣不能阻挡飞出的叶片,就会导致非包容事故发生,轻者飞机丧失部分动力,重者金属碎片会击穿飞机的机舱、油箱、液压管路和控制电路等,导致机毁人亡的事故发生(图1[1-2]). 相似文献