首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Series of spherical harmonics are constructed for derivatives of all orders of the gravitational potential of an arbitrary three-dimensional body, including the Earth, Moon and other planets. These series have a common structure, as simple as the potential itself. They differ from each other and from the series for the potential only by numerical coefficients of the spherical functions, by the degree of a numerical multiplier of the sum of double series, and by the limits of summation. The constructed series can be applied in solving many problems of celestial mechanics, satellite geodesy, and space navigation.  相似文献   

2.
The dynamics of the rotational motion of a satellite moving in the central Newtonian field of force over a circular orbit under the effect of gravitational and active damping torques, which depend on the satellite angular velocity projections, has been investigated. The paper proposes a method of determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of damping coefficients and principal central moments of inertia. The conditions of their existence have been obtained. For a zero equilibrium position where the axes of the satellite-centered coordinate system coincide with the axes of the orbital coordinate system, the necessary and sufficient conditions for asymptotic stability are obtained using the Routh–Hurwitz criterion. A detailed analysis of the regions where the conditions of the asymptotic stability of a zero equilibrium position are fulfilled have been obtained depending on three dimensionless parameters of the problem, and the numerical study of the process of attenuation of satellite’s spatial oscillations for various damping coefficients has been carried out. It has been shown that there is a wide range of damping parameters from which, by choosing the necessary values, one can provide the asymptotic stability of satellite’s zero equilibrium position in the orbital coordinate system.  相似文献   

3.
4.
Vil'ke  V. G.  Shatina  A. V. 《Cosmic Research》2001,39(3):295-302
A model of a binary planet, consisting of a material point of small mass and a deformable viscoelastic sphere, is suggested. The center of mass of the binary planet moves in the gravitational field of a central body in the plane, which contains planets forming the binary planet. A deformable spherical planet rotates around the axis orthogonal to the plane of planetary motion. Planet deformations are described by the linear theory of viscoelasticity. It is shown that with an appropriate approximation of the gravitational potential, there is a class of quasicircular orbits, when the eccentricities of an orbit of the center of mass of a binary planet and an orbit, describing mutual planet motion, are equal to zero. The further evolution of motion is investigated in this class of orbits with the use of the canonical Poincare–Andoyer variables. Corresponding averaged equations are found, and phase pictures are constructed; the stability of stationary solutions is investigated on the basis of equations in variations. For the Solar system planets with their satellites, forming binary planets, the application of the presented model allows us to conclude that satellites sooner or later will fall on the corresponding planets.  相似文献   

5.
The mode of spinning up a low-orbit satellite in the plane of its orbit is studied. In this mode, the satellite rotates around its longitudinal axis (principal central axis of the minimum moment of inertia), which executes small oscillations with respect to the normal to the orbit plane; the angular velocity of the rotation around the longitudinal axis is several tenths of a degree per second. Gravitational and restoring aerodynamic moments were taken into account in the equations of satellite’s motion, as well as a dissipative moment from eddy currents induced in the shell of the satellite by the Earth’s magnetic field. A small parameter characterizing deviation of the satellite from a dynamically symmetric shape and nongravitational external moments are introduced into the equations. A two-dimensional integral surface of the equations of motion, describing quasistationary rotations of the satellite close to cylindrical precession of the corresponding symmetrical satellite in a gravitational field, has been studied by the method of small parameter and numerically. We propose to consider such quasistationary rotations as unperturbed motions of the satellite in the spin-up mode.  相似文献   

6.
We investigated periodic motions of the axis of symmetry of a model satellite of the Earth, which are similar to the motions of the longitudinal axes of the Mir orbital station in 1999–2001 and the Foton-M3 satellite in 2007. The motions of these spacecraft represented weakly disturbed regular Euler precession with the angular momentum vector of motion relative to the center of mass close to the orbital plane. The direction of this vector during the motion was not practically changed. The model satellite represents an axisymmetric gyrostat with gyrostatic moment directed along the axis of symmetry. The satellite moves in a circular orbit and undergoes the action of the gravitational torque. The motion of the axis of symmetry of this satellite relative to the absolute space is described by fourth-order differential equations with periodic coefficients. The periodic solutions to this system with special symmetry properties are constructed using analytical and numerical methods.  相似文献   

7.
For a two-layer model of the Moon that consists of a solid nonspherical mantle and an ellipsoidal homogeneous liquid core, a theory of forced librations under the effect of gravitational Earth’s moments has been developed. The motion of the Moon over its orbit has been described by the high-accuracy theory of DE/LE-4 orbital motion. Tables have been constructed that present forced librations of the Moon caused by the second harmonic of its force function, in the neighborhood of its motion according to the generalized Cassini laws. Disturbances of the first-order with respect to dynamic compressions of the Moon and its core are obtained in analytical form for Andoyer variables and Poincare variables and for the projection of the angular velocity vector of Moon’s mantle rotation and the Poincare coordinate system (relative to which core’s liquid accomplishes simple motion) on its major central axes of inertia, as well as for the classical variables in the Moon libration theory, etc. Constructed tables of the forced librations theory give the amplitudes and periods of librations and combinations of arguments of the orbital motion theory that correspond to libration parameters. The interpretation of basic variations has been given and a comparison with the previous theories has been carried out, in particular with the modern empirical theory constructed based on the laser observation data.  相似文献   

8.
Dynamics of planets around other stars that demonstrate a variety of possible characteristics is of interest from the point of view of realization of new scenarios of evolution which have not been realized in the Solar System. We consider the rotational evolution of exoplanets under the action of gravitational perturbations and magnetic disturbances using the methods of quality analysis and theory of bifurcation of multiparametric differential equations that describe evolution of non-resonant rotation of a dynamically symmetric planet magnetized along its symmetry axis. We analyze 64 phase portraits describing the evolution of angular momentum vector L for all possible values of planet parameters. The values of parameters are determined for the case when the direct rotation of a planet is changed for its retrograde rotation.  相似文献   

9.
The dynamics of the rotational motion of a satellite, moving in the central Newtonian force field under the influence of gravitational and aerodynamic torques, is investigated. The paper proposes a method for determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of aerodynamic torque and the major central moments of inertia; the sufficient conditions for their existence are obtained. For each equilibrium orientation the sufficient stability conditions are obtained using the generalized energy integral as the Lyapunov function. The detailed numerical analysis of the regions where the stability conditions of the equilibrium positions are satisfied is carried out depending on four dimensionless parameters of the problem. It is shown that, in the general case, the number of satellite’s equilibrium positions, for which the sufficient stability conditions are satisfied, varies from 4 to 2 with an increase in the value of the aerodynamic torque magnitude.  相似文献   

10.
We consider the issues of modeling the moments of aerodynamic forces acting upon a satellite with gravitational system of stabilization. It is assumed that satellite orbits are almost circular with heights in the range 550–750 km. Simplified analytical expressions are suggested for the aerodynamic moment in the case when a satellite moves in the regime of gravitational orientation. Accuracy of the obtained expressions is estimated to be compared with that of expressions derived under the assumption of constant coefficient of frontal resistance. An analysis is made of short-periodic variations of the atmosphere density occurring due to orbital motion of a satellite. It is demonstrated that these variations can result in a substantial change of the aerodynamic moment, and their approximation by a truncated Fourier series is suggested. Estimates of the accuracy of the suggested approximation are given.  相似文献   

11.
We study the translational–rotational motion of a planet modeled by a viscoelastic sphere in the gravitational fields of an immovable attracting center and a satellite modeled as material points. The satellite and the planet move with respect to their common center of mass that, in turn, moves with respect to the attracting center. The exact system of equations of motion of the considered mechanical system is deduced from the D'Alembert–Lagrange variational principle. The method of separation of motions is applied to the obtained system of equations and an approximate system of ordinary differential equations is deduced which describes the translational–rotational motion of the planet and its satellite, taking into account the perturbations caused by elasticity and dissipation. An analysis of the deformed state of the viscoelastic planet under the action of gravitational forces and forces of inertia is carried out. It is demonstrated that in the steady-state motion, when energy dissipation vanishes, the planet's center of mass and the satellite move along circular orbits with respect to the attracting center, being located on a single line with it. The viscoelastic planet in its steady-state motion is immovable in the orbital frame of reference. It is demonstrated that this steady-state motion is unstable.  相似文献   

12.
采用复数级数法求解基于Reddy简化高阶剪切理论的复合材料对称角铺设矩形板横向弯曲问题。将待定位移函数展开为复数级数,代入该弯曲问题控制偏微分方程组,确定特征根和挠度待定常数与其他位移函数待定常数之间关系式。首次给出了该弯曲问题实数形式的一般解析解。将该一般解析解代入矩形板弯曲边界条件和角点条件,根据正弦级数的正交性建立关于挠度函数待定常数的线性代数方程组,求解此线性代数方程组可确定挠度函数待定常数。建立了该问题解析求解模式。将Reddy高阶剪切理论解析解与经典理论、一阶剪切理论解析解进行对比计算,验证了一般解析解,并给出数值算例。  相似文献   

13.
A satellite with electrodynamic stabilization system is considered. Based on the method of Lyapunov functions, sufficient conditions of the asymptotic stability of direct equilibrium position of this satellite in the orbital coordinate system under perturbing action of a gravitational moment are obtained. These conditions allow one to ensure a rational choice of parametric control coefficients depending on parameters of the satellite and its orbit.  相似文献   

14.
Based on the results of paper [1] by G.V. Mozhaev, joint perturbations produced by nonsphericity of the Earth and by attraction of the Moon and the Sun are investigated using the method of averaging. Arbitrary number of spherical harmonics was taken into account in the force function of the Earth’s gravitational filed, and only the principal term was retained in the perturbing function of the Sun. In the perturbing function of the Moon two parallactic terms were considered in addition to the dominant term. The flight altitude was chosen in such a way that perturbations produced by the Sun and Moon would have the second order of smallness relative to the polar oblateness of the Earth. As a result, the formulas for calculation of satellite coordinates are derived that give a high precision on long time intervals.  相似文献   

15.
Quasi-static microaccelerations are estimated for a satellite specially designed to perform space experiments in the field of microgravity. Three modes of attitude motion of the spacecraft are considered: passive gravitational orientation, orbital orientation, and semi-passive gravitational orientation. In these modes the lengthwise axis of the satellite is directed along the local vertical, while solar arrays lie in the orbit plane. The second and third modes are maintained using electromechanical executive devices: flywheel engines or gyrodynes. Estimations of residual microaccelerations are performed with the help of mathematical modeling of satellite’s attitude motion under the action of gravitational and aerodynamic moments, as well as the moment produced by the gyro system. It is demonstrated that all modes ensure rather low level of quasi-static microaccelerations on the satellite and provide for a fairly narrow region of variation for the vector of residual microacceleration. The semi-passive gravitational orientation ensures also a limited proper angular momentum of the gyro system.  相似文献   

16.
The precession of Saturn under the effect of the gravity of the Sun, Jupiter and planet’s satellites has been investigated. Saturn is considered to be an axisymmetric (A = B) solid body close to the dynamically spherical one. The orbits of Saturn and Jupiter are considered to be Keplerian ellipses in the inertial coordinate system. It has been shown that the entire set of small parameters of the problem can be reduced to two independent parameters. The averaged Hamiltonian function of the problem and the integrals of evolutionary equations are obtained disregarding the effect of satellites. Using the small parameter method, the expressions for the precession frequency and the nutation angle of the planet’s axis of rotation caused by the gravity of the Sun and Jupiter are obtained. Considering the planet with satellites as a whole preceding around the normal to the unmovable plane of Saturn’s orbit, the satellites effect on the Saturn rotation is taken into account via the corrections in the formula for the undisturbed precession frequency. The satellites are shown to have no effect on the nutation angle (in the framework of the accepted model), and the disturbances from Jupiter to make the main contribution to the nutation angle evolution. The effect of Jupiter on the nutation angle and the precession period is described with regard to the attraction of satellites.  相似文献   

17.
《Acta Astronautica》2013,82(2):635-644
The Inner Formation Flying System (IFFS) consisting of an outer satellite and an inner satellite which is a solid sphere proof mass freely flying in the shield cavity can construct a pure gravity orbit to precisely measure the earth gravity field. The gravitational attraction on the inner satellite due to the outer satellite is a significant disturbance source to the pure gravity orbit and is required to be limited to 10−11 m s−2 order. However, the gravitational disturbance force was on 10−9 m s−2 order actually and must be reduced by dedicated compensation mass blocks. The region of relative motion of the inner satellite about its nominal position is within 1 cm in dimension, which raises the complexity of the compensation blocks design. The iterative design strategy of the compensation blocks based on reducing the gravitational attraction at the nominal position of the inner satellite is presented, aiming to guarantee the gravitational force in the relative motion region within requirements after the compensation. The compensation blocks are designed according to the current status of IFFS, and the gravitational disturbance force in the region is reduced to 10−11 ms−2 order with minimized adding mass.  相似文献   

18.
Dynamics of attitude motion of an axisymmetric satellite moving in a circular orbit under the action of gravitational and aerodynamic torques is investigated. All equilibrium positions of the satellite in the orbital coordinate system are determined numerically, and sufficient conditions of stability of the equilibrium positions are derived.  相似文献   

19.
This article describes a method for determining the parameters of a circular Sun-synchronous orbit and coverage characteristics of a satellite for real-time global coverage. Basic solutions for a single satellite have been obtained in the form of intervals of possible orbital parameters and coverage characteristics depending on a given interruption of observations of any given point on the Earth’s surface. The solutions have been used to choose orbital parameters and estimate coverage characteristics for different combinations of input data.  相似文献   

20.
Kuznetsov  E. D.  Berland  V. E.  Wiebe  Yu. S.  Glamazda  D. V.  Kajzer  G. T.  Kolesnikov  V. I.  Khremli  G. P. 《Cosmic Research》2002,40(3):305-312
This paper continues a comparative analysis of modern satellite models of the Earth's gravity which we started in [6, 7]. In the cited works, the uniform norms of spherical functions were compared with their gradients for individual harmonics of the geopotential expansion [6] and the potential differences were compared with the gravitational accelerations obtained in various models of the Earth's gravity [7]. In practice, it is important to know how consistently the EAS motion is represented by various geopotential models. Unless otherwise stated, a model version in which the equations of motion are written using the classical Encke scheme and integrated together with the variation equations by the implicit one-step Everhart's algorithm [1] was used. When calculating coordinates and velocities on the integration step (at given instants of time), the approximate Everhart formula was employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号