首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文介绍了惯性顶级(IUS)固体火箭发动机用的丁羟推进剂及推进剂/包复层/绝热层界而系统的研制情况及生产历程;介绍了根据发动机设计要求选择推进剂配方的情况和推进剂的主要性能;还介绍了研制期间对配方和工艺的某些小的修改及修改原因。本文亦讨论了推进剂/包复层/绝热层的界面系统,包括包复层化学的主要特性和控制迁移现象以提高粘结系统的完整性的方法。  相似文献   

2.
本文评述了超声波探伤技术检测固体推进剂火箭发动机最严重的缺陷之一:壳体—包复层和包复层—推进剂间脱粘的能力。它报道了目前工厂使用的超声波脉冲多重反射法对于检查壳体—包复层脱粘是最有效的方法,但是在检查包复层—推进剂间脱粘方面不是很有效的。我们用发动机样品实验的结果表明:如果使用连续的不同频率的信号源和在干涉情况下分析反射波频谱,则脉冲多重反射法不仅能够检查壳作—包复层间的脱粘而且也能检查包复层—药柱间的脱粘。  相似文献   

3.
本发明叙述制造固体推进剂发动机用的聚氨酯配方,着重叙述火箭发动机燃烧室即壳体的完全固化包复层。由于种种原因,固体推进剂发动机需要有包复层,使发动机壳体具有不透气性;在壳体与推进剂之间形成一层绝热薄膜;并作为壳体与推进剂之间增强推进剂粘结的中间层。业已  相似文献   

4.
现己发展了一种能降低固体推进剂火箭发动机工艺成本的方法。该方法是使用封端异氰酸酯生产一种可控固化包复层,这种包复层具有适用期和存放时间可长可短的性能。成本降低是通过仪器设备的合理安排和利用来实现的。业已证明,包复层于25℃温度下的适用期在400小时以上;温度更低时,适用期超过12星期。在已延长的存放期前后,封端异氰酸酯包复层与端羟基聚丁二烯推进剂和火箭发动机惰性组元的粘结性能都非常好。若包复层初始状态是未固化和预固化的,那么在-18℃~63℃温度下的存放时间能达到12个星期。并且己经证明,要求快速固化时,封端异氰酸酯包复层中可以加入固化催化剂。  相似文献   

5.
用直径为6.25cm的端面燃烧发动机,装填高氯酸铵—端羟基聚丁二烯无金属推进剂进行了试验,探索应用包复氧化剂的方法,来改善燃烧稳定性。包复物质的热降解特性是通过对推进剂的热扩散系数进行理论分析推导得来的。选用了几种包复剂,推进剂用浇注法装填,这些推进剂(含包复过的氧化剂)在端面燃烧试验发动机内点火燃烧,实时记录压力一时间曲线。为了对比起见,用参比推进剂(氧化剂未包复)进行了同样试验。由扫描电子显微镜和BET吸附法测定来确定包复层的均匀性。体积型不稳定性频率、压力波动幅度以及稳定性边界均与火箭发动机特征长度(L*)有关的一些参数相关连。一般来说,用包复过的氧化剂制备的推进剂,燃烧稳定性比参比推进剂燃烧稳定性好。各种参数之间的相关性与新领域内许多未知因素有关。  相似文献   

6.
大型药柱的壳体粘结很少进行研究,往往成为火箭发动机生产中很困难的问题。当柔软的橡胶与坚硬的金属壳体粘结时,在粘结线上产生应力集中,会使成品发动机变得不能用。推进剂和壳体粘结的常用方法是采用可固化的胶粘剂包复层。业已证明,包复层和推进剂之间必须具有化学相似性才能很好粘结。本文列举了具体体现这一概念的粘结系统实例,并叙述其间有关的特殊化学反应。  相似文献   

7.
我厂在研制产品过程中,地面试验出现压力爬升、壳体烧穿与爆炸等现象。我厂试验工作者自行设计试验装置,采用实心药柱嵌入金属丝复合推进剂进行中止燃烧,实现了单室双推力的设计方案。通过试验,验证设计燃面变化和解决上述故障原因,摸清了装药包复层在发动机工作状态下的工作性能,发动机熄火正常,残药完整,包复层不脱落破碎。  相似文献   

8.
IPDI型HTPB推进剂界面软化因素研究   总被引:6,自引:1,他引:5  
根据界面推进剂状态和粘接拉伸强度,研究了HTPB—IP—DI推进剂界面软化的影响因素。结果表明,存放期间半固化衬层吸收的水分是HTPB—IPDI推进剂界面软化的根源:衬层吸水量的大小决定界面软化的程度;衬层中的吸水性填料、存放时间和环境湿度影响衬层的吸水量;而衬层中的固化催化剂、推进剂中的碱性功能助剂ZGY及高固化温度等因素对界面软化起着明显的促进作用。  相似文献   

9.
装药界面是固体火箭发动机故障高发部位。NEPE固体推进剂活性组分多,界面化学物理过程复杂,装药界面粘接问题更加突出。重点开展了界面结构表征、界面粘接与老化失效机理两个方面的研究,发现NEPE推进剂/衬层界面区域在微观尺度上存在多层次结构,推进剂一侧形成40~80μm的HMX及其键合剂富集区,衬层HTPB粘合剂向NEPE推进剂方向扩散,在物理分界衬层侧形成粘合剂基体富集层。系统分析了影响界面粘接的主要因素,确定了影响界面粘接的主反应,阐明了两个主反应的竞争关系。揭示了界面粘接的主要副反应,即工艺助剂YS与固化剂的反应。发现了NEPE推进剂/衬层粘接界面老化降解的关键化学过程,界面老化降解主要发生在PEG与N100反应形成的氨基甲酸酯结构的C—O键,氮氧化物的残余含量决定老化反应的速率。  相似文献   

10.
本文所介绍的扫频超声检测法,既可检测固体发动机壳体/衬层界面,又可检测衬层/推进剂界面的脱粘。这种检测法,已成功地用于生产现场、发射阵地 H-Ⅰ火箭的远地点发动机和第三级发动机的检测.试验结果证明此法还可用于 H-Ⅱ火箭固体发动机的检测.  相似文献   

11.
固体火箭发动机预固化技术及其应用   总被引:8,自引:1,他引:7  
依据HTPB复合推进剂界面特性 ,提出改变固化反应温度与时间来调节交联程度 ,使系统的官能团逐步进行化学反应 ,形成化学键和氢键 ,改善了生成物的力学性能。论述了预固化技术和粘接模型。将其应用于固体发动机推进剂 衬层界面粘接、发动机装药成型和推进剂药柱修补技术 ,经地面热试车和飞行考核 ,以及试件的十年储存试验考核 ,性能可靠 ,满足设计要求  相似文献   

12.
利用一维四分之一波长谐振原理改进的扫描频率超声探伤(SFUI)方法成功地对固体发动机衬层和推进剂之间界面脱粘进行了检验,并已用于对H—Ⅰ火箭上面级及对模拟的H—Ⅱ火箭助推级的生产过程和实验现场检验。  相似文献   

13.
针对列装部队服役产品现场开展固体火箭发动机燃烧室界面粘接质量无损检测的需求,研制了一种针对大型固体火箭发动机燃烧室推进剂/衬层/绝热层界面脱粘缺陷的无损检测系统。该系统基于机电阻抗频率响应函数方法,由多通道高速数据采集设备、压电主被动传感晶片、激励装置和软件评估系统组成,利用激励装置敲击固体发动机壳体待测结构表面,通过Lab VIEW数据采集程序测得响应信号,根据机电阻抗频响波形特征及波峰数量判断界面脱粘缺陷。当燃烧室绝热层/衬层/推进剂界面结构完好时,频响函数曲线仅有一个明显平滑的主波峰,当燃烧室绝热层/衬层/推进剂界面出现脱粘缺陷时,频响函数曲线的波峰数量增加,呈现明显的锯齿波形状。该方法便捷高效,非常适用于大型固体火箭发动机总装后整体产品燃烧室界面粘接质量的快速野外排查,也可进行长期的燃烧室界面状态健康监测。  相似文献   

14.
HTPB/TDI衬层与NEPE推进剂的界面反应机理   总被引:1,自引:0,他引:1  
采用富立叶变换红外光谱(FTIR)和全反射红外光谱(FTIR/ATR),研究了半固化的HTPB/TDI衬层表面的活性基团以及不同的—NCO基团与不同羟基的反应速率。结果表明,半固化的HTPB/TDI衬层表面含有大量的—NCO基团;HTPB/TDI衬层和NEPE推进剂粘合剂相的—NCO基与—OH的交叉反应速度较NEPE推进剂的固化反应速度快得多。HTPB/TDI衬层与NEPE推进剂界面的化学反应机理是粘合剂相中—OH基和—NCO基的交叉反应,其中衬层中TDI分子的—NCO基与PEG分子的—OH基的反应速度稍快于NEPE推进剂中N100分子的—NCO基与HTPB分子的—OH基的反应;在界面区域,HTPB/TDI衬层与NEPE推进剂通过氨基甲酸酯键形成化学粘接。  相似文献   

15.
固体发动机包覆层与推进剂界面脱粘裂纹稳定性分析   总被引:12,自引:4,他引:12  
为了判断固体发动机药柱包覆层与推进剂界面脱粘裂纹在燃气内压和轴向过栽联合作用下的稳定性,以翼锥药型并含前后伞盘的固体发动机为例,应用有限元方法,建立界面脱粘的三维有限元计算模型,在界面脱粘裂纹尖端设置三维奇异裂纹元,模拟裂纹扩展。通过在包覆层与推进剂界面上设置不同深度的脱粘,分别计算不同深度时脱粘裂纹的应力强度因子,得到裂纹应力强度因子随脱粘深度的变化规律,由此判断裂纹的稳定性。  相似文献   

16.
固体发动机药柱粘结试件的三维应力分析   总被引:1,自引:0,他引:1  
推进剂/衬层/绝热层矩形粘结试件已作为随发动机测试试件,用于监控药柱最薄弱的推进剂/衬层界面粘结质量。由于试件较厚,又材料具有粘弹特性,因此应对它进行三维粘弹性有限元分析。本文分析了推进剂/衬层界面附近的应力分布情况,并给出试件启裂点有效应力与拉伸平均应力之比的集中系数,供药柱结构完整性分析人员使用  相似文献   

17.
从推进剂及粘接界面力学性能、推进剂及粘接界面失效、发动机药柱及推进剂数值仿真方法、发动机药柱结构试验技术四方面,对药柱结构完整性发展现状进行了全方位多角度的评述,分析了目前固体发动机药柱结构完整性研究所面临的挑战,指出未来应重点发展推进剂和粘接界面力学特性及失效的多尺度表征和测试方法、先进数值仿真方法和发动机药柱结构试验技术,以及开发药柱结构完整性评估一体化平台。  相似文献   

18.
为研究某立贮式固体火箭发动机在海洋值班条件下推进剂/衬层粘接界面的损伤情况,对固体火箭发动机在实际振动载荷与重力耦合作用下的疲劳损伤进行了评估。对监测的发动机振动数据进行了预处理;利用有限元软件先后模拟了发动机固化降温过程和值班振动过程;运用三点雨流循环计数和Miner理论对粘接界面危险点处累积损伤值进行了计算。结果表明,固化降温过程中,药柱两端与人工脱粘层脱开,推进剂/衬层粘接界面剪应力变化过程可由幂函数τ=a·t~b+c表示;以固化降温结果作为原始条件,振动初始时刻粘接界面剪应力发生剧烈变化,约15 s后剪应力稳定变化,最大值点位于界面头部;在某特定海情下连续值班一年时,重力和振动载荷造成的某固体发动机寿命损伤为14.84%。  相似文献   

19.
药柱结构的完整性通常以实验室方皮试样的力学性能数据来评价。过去数年中,为了验证药柱结构能力,航空喷气公司进行了大量的试样切割和发动机解剖试验。从这些试验清楚地看出,标准方皮试样数据与实际推进剂药柱的整体和局部性能数据以及包复层/绝热层等其它材料性能数据相比,常常是不完整或是有差错的。为什么会得到不一致的结果,还不能圆满地解释。但很明显,发动机的工艺方法和总装后发动机的材料相互作用是出现差异的重要因素。本文提供了对发动机研究的实例,验证了把推进剂药柱的试验鉴定作为整体结构评价关键因素的重要意义。  相似文献   

20.
应用固体火箭发动机的X—射线照相技术浇铸推进剂药柱中出现的裂纹或推进剂与衬里之间的脱粘以及在推进剂药柱内存在的细小气孔、气泡等都会引起火焰压力峰局部升高。这会导致不希望的发动机压力升高。产生这种现象的原因是由于推进剂燃烧面积增大所造成的。压力升高会改变正常的推力—时间和压力—时间曲线。甚至于压力升高到超过了允许的范围而使结构破损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号