共查询到20条相似文献,搜索用时 0 毫秒
1.
D Montufar-Solis P J Duke D D'Aunno 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(6-7):193-199
The in vivo model our laboratory uses for studies of cartilage differentiation in space is the rat growth plate. Differences between missions, and in rat age and recovery times, provided differing results from each mission. However, in all missions, proliferation and differentiation of chondrocytes in the epiphyseal plate of spaceflown rats was altered as was matrix organization. In vitro systems, necessary complements to in vivo work, provide some advantages over the in vivo situation. In vitro, centrifugation of embryonic limb buds suppressed morphogenesis due to precocious differentiation, and changes in the developmental pattern suggest the involvement of Hox genes. In space, embryonic mouse limb mesenchyme cells differentiating in vitro on IML-1 had smoother membranes and lacked matrix seen in controls. Unusual formations, possibly highly ruffled membranes, were found in flight cultures. These results, coupled with in vivo centrifugation studies, show that in vivo or in vitro, the response of chondrocytes to gravitational changes follows Hert's curve as modified by Simon, i.e. decreased loading decreases differentiation, and increased loading speeds it up, but only to a point. After that, additional increases again slow down chondrogenesis. 相似文献
2.
A Murakami 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1253-1261
Negative gravitaxis of Paramecium almost disappeared in solutions having specific gravity about the same as that of the organisms (1.04). The taxis turned to positive in solutions of specific gravity 1.08. Using a drop shaft at the Japan Microgravity Center, Hokkaido (JAMIC) we examined how swimming behaviour in these media was modified by changing gravitational conditions before, during and after free-fall. Tracks of swimming cells recorded on videotape indicate that the swimming cells continued upward and downward shift depending on the specific gravity of the external medium under 1-g conditions and these vertical displacements disappeared immediately after the moment of launch. The effectiveness of changing gravity to induce displacement of the cells seems to depend on the orientation of the cells to gravity. These results suggest a corelation between vertical displacement of the cell through the medium and a gravitactic mechanism in Paramecium. 相似文献
3.
C S Brown W C Piastuch W M Knott 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):107-110
We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity. 相似文献
4.
L L Bruce 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(8):1533-1539
Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments. 相似文献
5.
R A Fox N G Daunton M L Corcoran 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):245-253
Maintenance of posture and production of functional, coordinated movement demand integration of sensory feedback with spinal and supra-spinal circuitry to produce adaptive motor control in altered gravity (G). To investigate neuroplastic processes leading to optimal performance in altered G we have studied motor control in adult rats using a battery of motor function tests following chronic exposure to various treatments (hyper-G, hindlimb suspension, chemical distruction of hair cells, space flight). These treatments differentially affect muscle fibers, vestibular receptors, and behavioral compensations and, in consequence, differentially disrupt air righting, swimming, posture and gait. The time-course of recovery from these disruptions varies depending on the function tested and the duration and type of treatment. These studies, with others (e.g., D'Amelio et al. in this volume), indicate that adaptation to altered gravity involves alterations in multiple sensory-motor systems that change at different rates. We propose that the use of parallel studies under different altered G conditions will most efficiently lead to an understanding of the modifications in central (neural) and peripheral (sensory and neuromuscular) systems that underlie sensory-motor adaptation in active, intact individuals. 相似文献
6.
S.M. Di A.R. Qian L.N. Qu W. Zhang Z. Wang C. Ding Y.H. Li H.G. Ren P. Shang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Single cell was capable of sensing and responding to alterations of gravity. Osteocytes, as the most abundant cells of the bone tissue playing an important role in the bone mechanotransduction, are very sensitive to mechanical stimuli. However, the effect of altered gravity on osteocytes so far is less known according to the public papers. Further study on this issue will help to verify and develop the theory of how cells perceive and respond to gravity. It also brings new ideas to the study of space bone loss. In our study, Osteocyte-like MLO-Y4 cells were exposed to 30 parabolic flights three times on ZERO-G airbus A300 to investigate the comprehensive effect on osteocytes stimulated by hyper- and hypo-gravity forces. It showed that the cell morphology, as well as cell area and height, was not changed significantly by hyper-gravity and hypo-gravity. However, the cytoskeleton was reorganized. In flight cells, F-actin polymerization was enhanced at the cell periphery and microtubule organizing center disappeared, but no apoptotic feathers were detected. The results of western blot showed that connexin 43 (Cx43) expression was down-regulated, indicating an decrease of gap-junction. In conclusion, hyper- and hypo-gravity stimulation altered the cytoskeleton architecture and suppressed gap-junction of osteocyte-like MLO-Y4 cells. 相似文献
7.
Calcium signaling in plant cells in altered gravity. 总被引:5,自引:0,他引:5
E L Kordyum 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(8):1621-1630
Changes in the intracellular Ca2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus-response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80th, a review highlighting the performed research and the possible significance of such Ca2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension --> alterations in the physicochemical properties of the membrane --> changes in membrane permeability, --> ion transport, membrane-bound enzyme activity, etc. --> metabolism rearrangements --> physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca2+ messenger system. Changes in Ca2+ influx/efflux and possible pathways of Ca2+ signaling in plant cell biochemical regulation in altered gravity are discussed. 相似文献
8.
R Hilbig R H Anken G Sonntag S Hohne J Henneberg N Kretschmer H Rahmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):835-841
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness-phenomena (SMS, a kinetosis). It has been argued that SMS during PAFs might not be based on microgravity alone but rather on changing accelerations from 0 g to 2 g. We test here the hypothesis that PAF-induced kinetosis is based on asymmetric statoliths (i.e., differently weighed statoliths on the right and the left side of the head), with asymmetric inputs to the brain being disclosed at microgravity. Since fish frequently reveal kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), we investigated (1) whether or not kinetotically swimming fish at microgravity would have a pronounced inner ear otolith asymmetry and (2) whether or not slow translational and continuously changing linear (vertical) acceleration on ground induced kinetosis. These latter accelerations were applied using a specially developed parabel-animal-container (PAC) to stimulate the cupular organs. The results suggest that the fish tested on ground can counter changing accelerations successfully without revealing kinetotic swimming patterns. Kinetosis could only be induced by PAFs. This finding suggests that it is indeed microgravity rather than changing accelerations, which induces kinetosis. Moreover, we demonstrate that fish swimming kinetotically during PAFs correlates with a higher otolith asymmetry in comparison to normally behaving animals in PAFs. 相似文献
9.
R Hemmersbach-Krause W Briegleb K H?der D-PVogel S Klein M Mulisch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):49-60
The orientation behavior of Paramecium changed in a similar way after transition to conditions of free-fall in a sounding rocket and after transition to conditions of simulated weightlessness on a fast rotating clinostat. After a period of residual orientation, Paramecium cells distributed themselves randomly 80 s (120 s) after onset of free-fall (simulated weightlessness). Swimming velocity increased significantly; however, the increase was transient and subsided after 3 min in the rocket experiments, while the velocity remained enhanced even during 2 h of rotation on a fast clinostat. Trichocysts were present and without morphological changes in Paramecium cells which had been exposed to a rocket flight, as well as to fast or slow rotation on a clinostat. Regeneration of the oral apparatus of Stentor and morphogenesis of Eufolliculina proceeded normally on the clinostat. The results demonstrate that the clinostat is a useful tool to simulate the conditions of weightlessness on earth and to detect gravisensitive cellular functions. 相似文献
10.
P Todd 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):43-49
Several modifications of differentiated functions of animal cells cultivated in vitro have been reported when cultures have been exposed to increased or decreased inertial acceleration fields by centrifugation, clinorotation, and orbital space flight. Variables modified by clinorotation conditions include inertial acceleration, convection, hydrostatic pressure, sedimentation, and shear stress, which also affect transport processes in the extracellular chemical environment. Autocrine, paracrine and endocrine substances, to which cells are responsive via specific receptors, are usually transported in vitro (and possibly in certain embryos) by convection and in vivo by a circulatory system or ciliary action. Increased inertial acceleration increases convective flow, while microgravity nearly abolishes it. In the latter case the extracellular transport of macromolecules is governed by diffusion. By making certain assumptions it is possible to calculate the Peclet number, the ratio of convective transport to diffusive transport. Some, but not all, responses of cells in vitro to modified inertial environments could be manifestations of modified extracellular convective flow. 相似文献
11.
A F Popova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(10):2253-2259
Results from experiments that used cells from the unicellular alga Chlorella vulgaris (strain Larg-1) grown on a clinostat, demonstrated the occurrence of rearrangements in cellular organelles, including changes in the mitochondrial ultrastructure compared to controls. Changes in mitochondrial structure were observed in auto- and heterotrophic regimes of cells grown in altered gravity conditions, especially in long-term experiments. The mitochondrial rearrangements become apparent during cell proliferation, which resulted in an increase in the relative volume of mitochondria per cell: up to 2.7 +/- 0.3% in short-term clino-rotation (2.2 +/- 0.1% in the control) and up to 5.3 +/- 0.4% and 5.1 +/- 0.4% in long-term clinorotation (2.3 +/- 0.2% in the control). The size of the mitochondria and their cristae increased in cells grown under long-time clinorotation. In addition, hypertrophied organelles, not typical for this strain, were observed. These changes in the cells were accompanied by increased electron density of the matrix and a well-ordered topography of the cristae. To examine the separation of oxidative phosphorylation and respiration, an inhibitory agent 2,4-dinitrophenol (2,4-DNP) was applied to cells which resulted in insignificant volume changes of the mitochondria (2.5 +/- 0.4% versus 2.1 +/- 0.2% in the control). The increase of mitochondrial size with regularly arranged cristae, with more condensed matrix and extension of cristae areas of clino-rotated cells, may demonstrate higher functional activity of the mitochondria under altered gravity conditions. Changes observed early in clinorotated cells, in particular the increased level of respiration, adenylate content (especially ATP) and more intensive electron-cytochemical reactions of Mg2(+)-ATPase and succinate [correction of succinat] dehydrogenase (SDH) in mitochondria (including hypertrophic organelles), also suggest increased activity of mitochondria from cells grown under altered gravity conditions compared to controls. 相似文献
12.
K Nguon G-H Li E M Sajdel-Sulkowska 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(8):1375-1380
The future of space exploration depends on a solid understanding of the developmental process under microgravity, specifically in relation to the central nervous system (CNS). We have previously employed a hypergravity paradigm to assess the impact of altered gravity on the developing rat cerebellum. The present study addresses the molecular mechanisms involved in the cerebellar response to hypergravity. Specifically, the study focuses on the expression of selected glial and neuronal cerebellar proteins in rat neonates exposed to hypergravity (1.5 G) from embryonic day (E)11 to postnatal day (P)6 or P9 (the time of maximal cerebellar changes) comparing them against their expression in rat neonates developing under normal gravity. Proteins were analyzed by quantitative Western blots of cerebellar homogenates; RNA analysis was performed in the same samples using quantitative PCR. Densitometric analysis of Western blots suggested a reduction in glial (glial acidic protein, GFAP) and neuronal (neuronal cell adhesion molecule, NCAM-L1, synaptophysin) proteins, but the changes in individual cerebellar proteins in hypergravity-exposed neonates appeared both age- and gender-specific. RNA analysis suggested a reduction in GFAP and synaptophysin mRNAs on P6. These data suggest that exposure to hypergravity may interfere with the expression of selected cerebellar proteins. These changes in protein expression may be involved in mediating the effect of hypergravity on the developing rat cerebellum. 相似文献
13.
T Borisova N Krisanova N Himmelreich 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(8):1362-1367
The biochemical basis underlying the effects of altered gravity on the process of nervous signal transmission is not clear. We have investigated the effect of hypergravity stress (created by centrifugation of rats at l0 g for 1 h) on the basal and stimulated release of L-[14C]glutamate (a chemical transmitter of excitatory signals) from isolated rat brain nerve terminals (synaptosomes). It has been shown that the hypergravity stress exerted a different influence on the Ca(2+)-dependent and the Ca(2+)-independent component of neurotransmitter release. The Ca(2+)-dependent L-[14C]glutamate release evoked by potassium chloride was equal to 14.4 +/- 0.7% of total synaptosomal label for control animals and 6.2 +/- 1.9% for animals, exposed to hypergravity (P < or = 0.05) and was more than twice decreased as a result of the hypergravity stress. We observed no statistically significant difference in the Ca(2+)-independent component of L-[14C]glutamate release. For control group and animals exposed to the hypergravity stress it was equal to 7.7 +/- 2.8% and 12.9 +/- 2.0%, respectively. We have also investigated the effect of the hypergravity stress on the activity of high-affinity Na(+)-dependent glutamate transporters. Km and Vmax of L-[14C]glutamate uptake have been determined. The maximal velocity of glutamate uptake was decreased as a result of hypergravity loading, but no difference in the Km values between control rats and hypergravity exposed animals was observed. These findings indicate that hypergravity stress alters neurotransmitter reuptake and exocytotic neurotransmitter release processes. 相似文献
14.
H Rahmann R H Anken 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):255-264
A review is being presented concerning behavioural, biochemical, histochemical and electronmicroscopical data on the influence of altered gravitational forces on the swimming performance and on the neuronal differentiation of the brain of cichlid fish larvae and adult swordtail fish that had been exposed to hyper-gravity (3g in laboratory centrifuges), hypo-gravity (>10(-2) g in a fast-rotating clinostat) and to near weightlessness (10(-4) g aboard the Spacelab D-2 mission). After long-term alterations of gravity (and parallel light deprivation), initial disturbances in the swimming behaviour followed by a stepwise regain of normal swimming modes are induced. Parallel, neuroplastic reactivities on different levels of investigation were found, such as adaptive alterations of activities of various enzymes in whole brain as well as in specific neuronal integration centers and an intraneuronal reactivity on ultrastructural level in individual brain parts and in the sensory epithelia of the inner ear. Taken together, these data reveal distinct adaptive neuroplastic reactions of fish to altered gravity conditions. 相似文献
15.
Effects of altered gravity on plant cell processes: results of recent space and clinostatic experiments. 总被引:1,自引:0,他引:1
E L Kordyum 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):77-85
Space and clinostatic experiments revealed that plant cell structure and metabolism rearrangements depend on taxonomical position and physiological state of objects, growth phase and real or simulated microgravity influence duration. It was shown that clinostat conditions reproduce only a part of microgravity biological effects. It is established that various responses occur in microgravity: 1) rearrangements of cytoplasmic organelles ultrastructure and calcium balance; 2) physical-chemical properties of the plasmalemma are changed; 3) enzymes activity is often enhanced. These events provoke the acceleration of growth and differentiation of cells and their aging as a result; at the same time some responses can be considered as cell adaptation to microgravity. 相似文献
16.
K Slenzka R Appel T h Kappel H Rahmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(6-7):125-128
Biochemical analyses of the brain of cichlid fish larvae, exposed for 7 days to increased acceleration of 3g (hyper-g), revealed an increase in energy availability (succinate dehydrogenase activity, SDH), and in mitochondrial energy transformation (creatine kinase, Mia-CK), but no changes in an energy consumptive process (high-affinity Ca(2+)-ATPase). Brain glucose-6-phosphate dehydrogenase (G6PDH) of developing fish was previously found to be increased after hyper-g exposure. Three respectively 5 hours thereafter dramatic fluctuations in enzyme activity were registered. Analysing the cytosolic or plasma membrane-located brain creatine kinase (BB-CK) of clawed toad larvae after long-term hyper-g exposure a significant increase in enzyme activity was demonstrated, whereas the activity of a high affinity Ca(2+)-ATPase remained unaffected. 相似文献
17.
K Slenzka R Appel H Rahmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):273-276
Biochemical analyses of the brain of Cichlid fish larvae, exposed during their very early development for 7 days to an increased acceleration of 3g (hyper-gravity), revealed a decrease in brain nucleoside diphosphate kinase (NDPK) as well as creatine kinase (BB-CK) activity. Using high performance liquid chromatography (HPLC) the concentrations of adenine nucleotides (AMP, ADP, ATP), phospliocreatine (CP), as well as of nicotineamide adenine dinucleotides (NAD, NADP) were analyzed in the brain of hyper-g exposed larvae vs. 1g controls. A slight reduction in the total adenine nucleotides (TAN) as well as the adenylate energy charge (AEC) was found. In parallel a significant increase in the NAD concentration and a corresponding decrease in NADP concentration occurred in larva's hyper-g brains vs. 1 g controls. These results give further evidence for an Influence of gravity on cellular level and furthermore contribute to a clarification of the cellular signal-response chain for gravity perception. 相似文献
18.
U Paulus G Nindl K H K?rtje K Slenzka J Neubert H Rahmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(6-7):285-288
Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of regional neuronal activity in a primary, vestibular brainstem nucleus and in gravity receptive epithelia in the inner ear. Our results show, that gravity seems to be positively correlated with cytochrome oxidase activity in the magnocellular nucleus of developing fish brain. In the inner ear the energy metabolism is decreased under microgravity concerning utricle but not saccule. Hypergravity has no effect on cytochrome oxidase activity in sensory inner ear epithelia. 相似文献
19.
T Bj?rkman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):195-201
Physical principles can be used to predict some features about the gravity perception system in plants. The nature of the system has made it rather elusive, so this approach represents an additional source of information to help find it. For a gravitational stimulus to be detected, two masses must move relative to each other in a manner which causes a significant amount of work to be done on a receptor. Relative to cellular dimensions, the masses must be large, be dense and move noticeable distances. The main sources of noise are thermal motion and flexing of the plant tissue. Some new models for the function of amyloplasts as statoliths are presented. 相似文献