首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
本文设计了一种单恒流源电流频率转换电路,使电路的功耗减小一半,更加小型化,并且具有更好的对称性和精度.提出并从原理上论证了这种单恒流源I/F技术的理论依据,设计出相应的硬件电路,验证其原理的正确性和工程上的可行性.为单恒流源I/F技术的研发,拓展了思路,奠定了基础.  相似文献   

2.
针对当前导弹火工品所采用的设备存在通用性、自动化不高,测试精度低,以及存在在线测量的高风险性等问题,研发了1款导弹火工品通用化自动测试仪,可以显著提高导弹技术保障效率.在硬件设计方面,利用精密恒流源加电取样的电阻测量原理,应用自动化控制和精密测量技术,通过电子电路方案优化设计与产品加工,实现了导弹火工品的快速、精准和安...  相似文献   

3.
ZJL801纳伏电压标准装置频率特性分析   总被引:1,自引:0,他引:1  
针对低频超小电压计量测试设备的工作频率范围不宽和测量精度不高的问题,经过电子元器件及相关部件的频率特性分析与试验,确定了相关电容器的性能是影响仪器频率特性的关键。通过采用制作优质精密电容器,设计前置放大器、测量电路、连接电路、衰减器和校准信号源的频率特性及计算机数据处理等多种方法扩展了设备的工作频率,提高了测量精度,改善了频率特性。  相似文献   

4.
高精度静电悬浮加速度计可作为海空重力测量仪器中的核心传感器,检验质量的位移检测电路是加速度计控制系统的核心,其精度直接影响了加速度计零偏和标度因数的稳定性,因此需要研究分辨率高、噪声小的位移检测系统。针对高精度静电悬浮加速度计的地面应用需求,以大表面积质量比的敏感探头结构为测量对象,设计了基于差动电容的位移检测电路,建立了电容检测电路的数学模型,对电路误差源进行了系统分析。实验结果表明,该电路能够有效地抑制悬浮高压引入的耦合误差,减小电路噪声。当电路工作在零点附近,20kHz内的噪声小于2×10-6V/Hz1/2,对应电容检测分辨率为2.93×10-5pF/Hz1/2,能够满足地面应用静电加速度计对位移测量精度的要求。  相似文献   

5.
本文针对全液浮陀螺仪设计了一个数字PID温度控制系统,详细介绍了温控设计的原理、控制策略。硬件方面选用铂电阻丝作为温度传感元件,通过高精度的恒流源连接测温电阻,采用差分输入的方式使转换电路和测温电路相互独立,提高了控制精度。软件方面采用PID控制方式减少了静态误差,达到了很好的控制效果。  相似文献   

6.
设计一种新型二维微小角度传感器,可实现实时二维角度的测量。并采用基于DSP的检测电路进行高速数据采集处理,使系统的测量精度和响应速度满足了当前在线检测的需求,角度测量>±600arcsec,测量分辨率优于0.1arcsec。  相似文献   

7.
高性能半导体激光器温度控制单元的设计   总被引:1,自引:0,他引:1  
研究了半导体激光器温度控制系统的设计,包括高精度温度测量电路和大电流半导体制冷片(TEC)驱动电路以及制冷片保护电路。实验表明系统抗干扰能力强,动态响应速度快,控温效果好,在-40-55℃宽范围内半导体泵浦头温度控制精度可达±0.2℃。  相似文献   

8.
中精度频率测量电路主要用于中精度石英振梁加速度计频率输出的二次测量。通过比较并选择合适的测量方法,详细地分析了方案的理论误差,研究基于NiosⅡ嵌入式处理器的测频电路,将数据采样和运算单元都集成在FPGA芯片中,形成一个片上操作系统SOPC,获得了较高精度的测量结果。  相似文献   

9.
超磁致伸缩执行器的驱动电路及接口设计   总被引:1,自引:0,他引:1  
介绍了采用超磁致伸缩执行器自行开发的切削振动控制系统,论述了该系统中的超磁致伸缩执行器的驱动电路和接口的设计过程。根据超磁致伸缩材料的驱动特性,该驱动电路设计成一个连续可调的恒流源。  相似文献   

10.
基于DSP的航空发动机转速传感器设计   总被引:12,自引:3,他引:12       下载免费PDF全文
徐科  黄金泉  张天宏  蒋文亮 《推进技术》2004,25(2):180-182,186
提出了一种基于TMS320 LF2407A DSP的航空发动机智能转速传感器。设计了转速信号处理电路、显示电路、数字信号处理(DSP)与控制器局域网(CAN)总线接口电路和电源电路。提出采用动态分频技术的转速测量方法,并分析了其在2407A DSP上的实现,提高了转速测量的精度。实验结果表明该智能转速传感器功能强大、实时性好、精度可达0.01%,可应用于航空发动机分布式控制系统中。  相似文献   

11.
提出了用最小二乘估计解算辐射源位置,在迭代过程中通过地理信息系统查询并不断修正目标高程,同时其定位误差进行了分析和仿真。结果表明,修正高程误差后可以改进目标高程定位精度,进而促进水平定位精度,水平定位精度的提高又会促进在高度上的定位,从而使整体的定位精度得到了改善。  相似文献   

12.
采用Teager-Kaiser能量算子对定子电流进行解调,有效消除了基频频谱泄露对提取转子速度谐波的影响,然后分析了SDTFT对转速估计精度的影响,在此基础上提出一种新的mSDTFT频谱分析方法估计转速。该方法有效降低了计算开销,特别是可以只针对某些需要的谱线进行计算,提高了谱分析的灵活性和高效性。试验结果表明,所提方法在不同负载条件下能够有效提取转子速度谐波,且具有较高的转速估计精度。  相似文献   

13.
介绍了用于线加速度计精密离心试验的精密离心机设备各项误差的来源和定义。详细分析了精密离心机各项误差在线加速度计离心机试验中对仪表给定加速度精度的影响并给出了具体的计算方法。在线加速度计精密离心机试验中,可根据每个误差项的具体来源和影响,对误差项进行补偿或忽略,以提高测试精度和降低试验难度。对于计入的误差项,可计算出具体的数值,从而综合确定出精密离心机设备对整个测试实验的不确定度影响。通过研究精密离心机误差模型,找到了提高精密离心机给定加速度输入精度的途径,给出了工程化的用于精密离心机精度评定的方法。  相似文献   

14.
一种改进的GPS动态定位滤波方法   总被引:1,自引:1,他引:0       下载免费PDF全文
针对GPS接收机能够测量卫星信号的多普勒频率的特性,亦即能够测量三维速度的特性,引入了一种改进的GPS定位系统滤波算法。首先,根据机动载体的"当前"统计模型建立了系统状态方程;然后,根据GPS接收机实际能够输出位置与速度信息的特点建立了系统的量测方程;最后,给出了标准的卡尔曼滤波算法模型并详细描述了算法的推导过程。仿真结果表明,改进算法相对于以前的算法无论是在精度和跟踪速度方面都有较大的提高。  相似文献   

15.
目前卫星定位技术中常用的高精度定位方法主要是相对定位和非差相位精密单点定位。非差相位精密单点定位无法像相对定位那样使用差分方式来消除定位中的某些误差,因而如何对影响定位的各个误差源进行准确地建模修正是提高非差相位精密单点定位精度和收敛速度的关键。本文从非差相位精密单点定位的3个关键环节入手,对影响定位收敛速度的因素进行简要分析,讨论了改善措施,并结合实际数据进行了相关验证。  相似文献   

16.
基于方差分析的Monte-Carlo制导精度分配方法研究   总被引:1,自引:0,他引:1  
传统的Monte-Carlo制导精度分配法是将所有的误差源纳入到精度分配中,在处理多误差源、多误差水平分配时,会导致仿真时间的增加.为此,将方差分析引入待分配项的确定中,并以某空地导弹精度分配为例进行了仿真分析.仿真结果表明,基于方差分析的Monte-Carlo制导精度分配方法大大减少了计算时间,且所设计的精度分配方案能满足工程设计要求.  相似文献   

17.
针对机动目标跟踪中航迹信息提取精度不高的问题,提出一种ECEF坐标系下基于交互多模型的多机协同跟踪算法。首先,各载机以ECEF坐标系为融合中心对目标量测进行无偏转换处理,以有效减小量测转换误差对目标跟踪的影响;然后,利用交互多模型的方法对目标进行融合跟踪,以进一步提高目标机动时的跟踪精度;最后,通过二次滤波的方法,来有效实现目标航迹信息的精确提取。仿真结果表明,该算法可较好地提高目标机动时的跟踪精度和航迹信息提取精度。  相似文献   

18.
光纤陀螺(FOG)温度漂移误差是影响其输出精度的主要误差源之一,在实际应用中必须对光纤陀螺温度漂移误差进行适当补偿。传统的最小二乘法等线性补偿方法很难满足补偿精度的要求且适用性较差,利用BP及RBF神经网络分别建立非线性光纤陀螺温度漂移误差模型,可以有效提高补偿精度,使用FOG温箱实测数据对最小二乘模型及神经网络补偿模型进行了测试对比,验证了基于神经网络的非线性补偿算法在FOG温度漂移补偿中的有效性。  相似文献   

19.
针对先进飞机远程终端采样技术,对电压/电流(400Hz)采样点数和精度关系进行了讨论,由于工程采样中数字积分法的开方计算有效值对实时性有很大影响,给出了全新的不带根号的采样有效值算法,精度要求高的场合又在该算法的基础上设计了迭代算子.  相似文献   

20.
针对五相永磁同步电机控制需要电流传感器数量多、成本高的问题,提出了一种五相永磁同步电机相电流重构方法。它只使用两个电流传感器便可实现对五相电流的全采集,能有效减少硬件电路的成本和复杂性,重构精度和速度能够满足五相电机控制的需要。最后在MATLAB仿真中对所提方法进行验证,仿真结果证实了所提方法的正确性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号