首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A fixed frequency LCL-type series resonant converter (SRC) which uses an inductive output filter is proposed. Steady-state analysis of the converter is presented using complex ac circuit analysis. Based on the analysis, a simple design procedure is given. Detailed space integrated control experiment (SPICE) simulation results are presented to evaluate the performance of the designed converter under varying load and supply voltage conditions. Also, detailed experimental results obtained from a metal-oxide-semiconductor field-effect transistor (MOSFET) based 500 W converter are presented to verify the analysis and SPICE simulation results. The results obtained from the analysis, SPICE simulation and the experimental converter are compared. The proposed converter requires a narrow variation in pulsewidth while maintaining lagging power factor mode of operation for a very wide variation in the load as well as supply voltage  相似文献   

2.
A series-parallel resonant converter employing (LC)(LC)-type tank circuit operating in lagging power factor (PF) mode is presented and analyzed using complex ac circuit analysis. Design curves are obtained and the converter is optimized under certain constraints. Detailed Space Integrated Control Experiment (SPICE) simulation results are presented to evaluate the performance of the designed converter under varying load conditions. Results obtained from an experimental converter are also presented. The results obtained from the theory, SPICE simulation, and the experimental converter are compared. The proposed converter has high efficiency from full load to very light load (<10%). Switching frequency variation required for a wide change in the load (near load open circuit to full load) is narrow compared with the series resonant converter (SRC)  相似文献   

3.
A 1 /spl phi/ high-frequency (HF) transformer isolated, soft-switching single-stage ac-dc converter with low line-current harmonic distortion is presented. Its operation is explained with equivalent circuits for the various intervals. The converter is analyzed and design curves are obtained. An optimization parameter is introduced and a systematic design procedure is illustrated with a design example. Detailed SPICE simulation and experimental results of a 500 W converter with load as well as line voltage variation are given to verify theory. The proposed converter employs a zero-voltage transition (ZVT) network to ensure zero-voltage switching (ZVS) at all loads, and natural power factor correction is ensured using a simple control circuit.  相似文献   

4.
A modified series-parallel high-frequency resonant DC/DC converter configuration is proposed. A simplified steady-state analysis of the converter, including the effect of a high-frequency transformer using complex circuit analysis, is presented. Based on the analysis, a simple design procedure is given. The effect of magnetizing inductances of the high-frequency transformer on the performance of the converter is discussed. Detailed experimental results obtained from a MOSFET (metal-oxide-semiconductor field-effect-transistor)-based 1-kW converter are presented to verify the analysis. The converter presented has almost constant efficiency from full load to quarter load, and the converter has load short circuit capability  相似文献   

5.
A novel high-frequency transformer linked full-bridge type soft-switching phase-shift pulsewidth modulated (PWM) controlled dc-dc power converter is presented, which can be used as a power conditioner for small-scale photovoltaic and fuel cell power generation systems as well as isolated boost dc-dc power converter for automotive ac power supply. In these applications with low-voltage large-current sources, the full-bridge circuit is the most attractive topology due to the possibility of using low-voltage high-performance metal-oxide-semiconductor field-effect transistor (MOSFET) and achieving high efficiency of the dc-dc power converter. A tapped-inductor filter including the freewheeling diode is newly implemented in the output stage of the full-bridge phase-shift PWM dc-dc converter to achieve soft-switching operation for the wide load variation range. Moreover, in the proposed converter circuit, the circulating current is effectively minimized without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching dc-dc power converter was verified in laboratory level experiment with 1 kW 100 kHz breadboard setup using power MOSFETs. Actual efficiency of 94-97% was obtained for the wide duty cycle and load variation ranges.  相似文献   

6.
A new ac/dc 3-/spl phi/ single-stage converter is proposed integrating a 3-/spl phi/ discontinuous current mode (DCM) boost with a dc/dc fixed frequency series resonant converter (SRC). This converter has the following features: natural power factor correction, soft switching, high-frequency (HF) transformer isolation with the series resonant tank operating in above resonance mode, etc. A new complementary gating control scheme is used for simultaneous control of boost converter and the SRC. Modes of operation are presented and analyzed. Based on the analysis, design curves are obtained. An optimum design is given and a design example is presented. Results obtained from SPICE simulation for the designed converter are given to verify the performance of the proposed converter for varying load as well as line voltage. Experimental results obtained from a laboratory prototype converter are presented to verify the theory.  相似文献   

7.
The possibility is studied to create a sodium circuit in an AMTEC type conversion device. The proposed circuit is based on a heat pipe that includes the evaporation-condensation cycle. Different layouts based on this principle are presented. The proposed circuit is characterized by the following advantages: no need for an electromagnetic pump; low load on the converter; and a better capability to control temperature drop at the converter  相似文献   

8.
A soft switching boost converter with zero-voltage transition (ZVT) main switch using zero-current switching (ZCS) auxiliary switch is proposed. Operating intervals of the converter are presented and analyzed. Design considerations are discussed. A design example with experimental results obtained from a 600 W, 100 kHz, 380 V output, power factor corrected, ac-to-dc, boost converter using insulated gate bipolar transistors (IGBTs) is presented, Results show that the main switch maintains ZVT while the auxiliary switch retains ZCS for the complete specified line and load conditions  相似文献   

9.
Six modes of operation for the push-pull 4c-to-dc converter are presented by taking into account the magnetizing current of the transformer. If the inductance of the transformer is decreased, the region where the output voltage is abnormally high is expanded in the load characteristics.  相似文献   

10.
A new single-stage single-switch power factor correction converter with output electrical isolation is presented. The configuration of this converter is achieved by combining a flyback circuit and a forward circuit in one power stage. The principle of operation and steady-state analysis of the proposed topology is given. Based on its steady-state operation constraints, a design procedure along with a specific design example is reported. To verify the theoretical analysis of the proposed converter, a design example is given with its PSPICE simulation and experimental results  相似文献   

11.
An interleaved two-phase forward converter using an integrated magnetic component is proposed for telecommunication and computer applications. The integrated magnetic component consists of two step-down transformers and two output-filtering inductors on a single magnetic core. The z-parameter (gyrator) model and the equivalent-circuit model of the integrated magnetic component are presented. The circuit operation and design criteria of the proposed converter are described. All theoretical analyses are verified by simulated and experimental results.  相似文献   

12.
Design optimization for asymmetrical ZVS-PWM zeta converter   总被引:1,自引:0,他引:1  
In this paper, a new soft-switching Zeta converter with an asymmetrical pulsewidth modulation (PWM) control is proposed. The proposed Zeta converter has the features of constant frequency operation, zero voltage switching (ZVS), and low voltage stress on the active switches. Moreover, it can achieve high power density, high efficiency, low switching loss, and low component count, which make converter operation at low to medium power level feasible. Operational principle of the Zeta converter is presented in detail, and a specific example is designed and implemented to verify its feasibility.  相似文献   

13.
The design and implementation of a multimodule parallel series-loaded resonant (SLR) converter system is presented. The SLR converter to be paralleled is operated in the n=2 discontinuous mode (DCM). Its dc analysis and dynamic modeling are made. In parallel operation, an average control technique is proposed to compensate the mismatch in current control characteristics of each parallel converter. Good dynamic and static current sharing characteristics are obtained. In addition, to obtain good output voltage regulating control performance, a design procedure is presented to find the parameters of feedback voltage controller according to the prescribed specifications  相似文献   

14.
A new dc-dc converter featuring a steep step-down of the input voltage is presented. It answers a typical need for on-board aeronautics modern power architectures: power supplies with a large conversion ratio able to deliver an output voltage of 1–1.2 V. The proposed structure is derived from a switched-capacitor circuit integrated with a buck converter; they share the same active switch. The proposed solution removes the electromagnetic interference (EMI) emission due to the large di/dt in the input current of the switched-capacitor power supplies. Compared with a quadratic buck converter, it presents a similar complexity, a smaller reduction in the line voltage at full load (but less conduction losses due to smaller input inductor current and capacitor voltage), lower voltage stresses on the transistor and diodes, lower current stresses in the diodes, and smaller size inductors. A similar structure using a buck-boost converter as the second stage is also presented. The experimental results confirm the theoretical developments.  相似文献   

15.
Improved ZCS-PWM commutation cell for IGBTs application   总被引:1,自引:0,他引:1  
An improved zero-current-switching pulsewidth-modulated (ZCS-PWM) commutation cell is presented, which is suitable for high-power applications using insulated gate bipolar transistors (IGBTs) as the power switches. It provides ZCS operation for active switches and zero-voltage-switching (ZVS) operation for passive switches. Besides operating at constant frequency and reducing commutation losses, the proposed ZCS-PWM switch cell has no additional current stress and conduction loss in the main switch. To demonstrate the feasibility of the proposed ZCS-PWM commutation cell, it was applied to a boost converter. Operating principle, theoretical analysis, design guidelines, and a design example are described and verified by experiment results obtained from a prototype rated 1 kW and operating at 40 kHz. The PWM switch model and state-space averaging approach is also used to estimate and examine the steady-state and dynamic character of ZCS-PWM boost converter system. Finally, the application of the proposed soft-switching technique in the dc-dc nonisolated converters is presented.  相似文献   

16.
Signal flow graph (SFG) nonlinear modeling approach is well known for modeling dc-dc converters. However, all possible SFGs of a given dc-dc converter system will not yield the generalized graph. A systematic procedure and guidelines for developing unified flow graph models of the dc-dc boost converters, from which complete behavior can be determined is presented. Usefulness of the proposed method is demonstrated through examples. As an illustration a 2-cell cascade boost and interleaved boost converter systems are taken as examples. Derivation of large, small-signal and steady-state models from generalized flow graph is also demonstrated. Large-signal model is developed and programmed in TUTSIM simulator. Large-signal, responses against supply and load disturbances are obtained. Experimental observations are provided to validate the proposed algorithm.  相似文献   

17.
A class-E DC-to-DC converter with half-wave controlled current rectifier is proposed. Its output voltage is controlled by the conduction angle of the rectifier switch at constant switching frequency. Zero voltage switching for all the switches can be maintained from full load to no load. Its steady state characteristics are analyzed and the effects of the circuit parameters are studied. Some extensions of the proposed converter are also discussed. The analysis is verified by PSPICE simulation and an experimental prototype  相似文献   

18.
《中国航空学报》2023,36(7):420-429
In this paper, a fault-tolerance wide voltage conversion gain DC/DC converter for More Electric Aircraft (MEA) is proposed. The proposed converter consists of a basic Cuk converter module and n expandable units. By adjusting the operation state of the expandable units, the voltage conversion gain of the proposed converter could be regulated, which makes it available for wide voltage conversion applications. Especially, since mutual redundancy can be realized between the basic Cuk converter module and the expandable units, the converter can continuously work when an unpredictable fault occurs to the fault-tolerant parts of the proposed converter, which reflects the fault tolerance of the converter and significantly improves the reliability of the system. Moreover, the advantages of small input current ripple, automatic current sharing and low voltage stress are also integrated in this converter. The working principle and features of the proposed converter are mainly introduced, and an experimental prototype with 800 W output power has been manufactured to verify the practicability and availability of the proposed converter.  相似文献   

19.
A novel active snubber soft switching method is proposed. The unique location of the resonant inductor and capacitor ensures low current and voltage stresses in the converter. An analytical study of a boost dc-dc converter with the proposed active snubber method is presented in detail to illustrate its operation principles and design considerations. By simple modification, this soft switching method is also suitable for ac-dc boost topology, especially for high power-factor-correction (PFC) universal interface applications. A 500 W prototype system has been made to simulatively and experimentally verify the performance of the soft switching.  相似文献   

20.
Photovoltaic (PV) generators exhibit nonlinear v-i characteristics and maximum power (MP) points that vary with solar insulation. An intermediate converter can therefore increase efficiency by matching the PV system to the load and by operating the solar cell arrays (SCAs) at their maximum power point. An MP point tracking algorithm is developed using only SCA voltage information thus leading to current sensorless tracking control. The inadequacy of a boost converter for array voltage based MP point control is experimentally verified and an improved converter system is proposed. The proposed converter system results in low ripple content, which improves the array performance and hence a lower value of capacitance is sufficient on the solar array side. Simplified mathematical expressions for a PV source are derived. A signal flow graph is employed for modeling the converter system. Current sensorless peak power tracking effectiveness is demonstrated through simulation results. Experimental results are presented to validate the proposed method  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号