首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
航天飞行器防热部件烧蚀行为的数值模拟   总被引:2,自引:0,他引:2  
对航天飞行器防热部件在氧-煤油发动机火焰喷吹下的烧蚀行为进行了有限元数值模拟。利用“杀死”单元的方法建立防热部件瞬态温度场的有限元模型,实现了烧蚀边界的退缩,从而完成了对烧蚀尺寸变化的定量描述。烧蚀开始于4.59s,到12s时线烧蚀量为1.47mm。计算结果与试验的实测结果一致。  相似文献   

2.
从内弹道性能、气动防热、绝热结构设计和后效推力预示等方面研究了临近空间飞行器总体设计对固体发动机的需求。内弹道性能方面,在总冲一定的情况下,发动机采用“长时间小推力”的工作模式、“前高后低”的推力曲线形式,对提高分离点高度和关机点速度、减小分离点动压有利;气动防热方面,临近空间飞行器发动机外壁热环境远比传统弹道式严酷,需要采取相应的防热措施;绝热结构设计方面,分析了过载条件下燃烧室中粒子的受力情况、粒子沉积分布位置以及对绝热结构的影响,提出了过载条件下发动机绝热裕度设计校核的需求;后效推力预示方面,发动机下降段高空推力的预示精度对分离安全性及分离时序的设计有着非常重要的作用,需要提高后效推力预示的准确性,以满足分离设计的要求。文章研究总结的方法、规律和结论,对临近空间飞行器固体发动机的设计具有重要的参考意义。  相似文献   

3.
固体火箭发动机使用寿命的预估和"延寿"   总被引:7,自引:2,他引:7  
介绍了长期使用寿命分析等固体火箭发动机寿命预公的方法。从经济和环保方面考虑,对到期的固体火箭发动机应用采取推进剂回收再利用等措施,对经过评估认为到期后部分失效的发动机,可采用整修措施,更换失效部件,对失效的药柱重新浇铸等,以延长其使用期。  相似文献   

4.
采用数值仿真方法,开展了固体运载火箭底部对流热环境计算研究。采用线性化热力学参数的单一介质简化处理方法,模拟了发动机喷流与高速主流的流场,得到了热流与温度参数,并与飞行试验结果进行了对比分析。结果表明固体运载火箭底部存在较为严酷的对流热环境,本文的数值计算结果与真实飞行试验结果吻合较好,该方法可为固体运载火箭的热环境与防热设计提供参考。  相似文献   

5.
惯性顶级固体发动机的研制现状   总被引:1,自引:0,他引:1  
惯性顶级(IUS)全尺寸发动机研制计划包括三级发动机的设计、研制和飞行鉴定。这些发动机按不同方法组合起来,可以用来满足给定的有效载荷的能量要求。推进系统的设计已经完成,当前的主要精力集中在完成鉴定阶段前的研制阶段试验上。到目前为止,所有的静止试车都是成功的。本文首先介绍一下惯性顶级飞行器,接着描述每级固体发动机的设计特点,最后总结了迄今为止所作的发动机各部件和整机的试验结果。在必要的地方,文中深入地分析了每项试验中哪些方面是重要的,为什么重要,以及怎样满足了惯性顶级的这些要求。  相似文献   

6.
H-I顶级发动机研制中开发了几项新技术,如采用轻型材料制造的结构部件,含HMX的HTPB推进剂,新式点火装置,以及新的检测方法等。本文对这几项新技术做了全面介绍.  相似文献   

7.
神舟飞船防热结构的研制   总被引:2,自引:0,他引:2  
从结构方案、材料选择、地面试验等方面对神舟飞船防热结构的研制和某些特点进行了阐述。介绍了防热结构的飞行结果,特别是舷窗、舱盖、天线、姿控发动机等部位的烧蚀情况,证实了飞船的局部防热是十分成功的。  相似文献   

8.
基于ANSYS/Workbench平台,二次开发了固体火箭发动机壳体外防热计算的一维程序算法,开展某发动机外防热仿真计算,获得了壳体与涂层间界面最高温度,对比相应风洞试验测试结果,验证了算法的正确性。最后,建立了某固体火箭发动机壳体三维参数化模型,应用该算法,选取外防热涂层厚度作为设计变量,以壳体与涂层间界面最高温度为目标函数,联合ANSYS/Workbench中目标驱动优化功能(Goal Driven Optimization-GDO)进行设计计算,实现了壳体外防热涂层厚度设计的自主择优。  相似文献   

9.
神舟飞船防热大底结构设计   总被引:1,自引:0,他引:1  
简要介绍了神舟飞船返回舱上的主要防热部件——防热大底的结构设计特点。从受热、受力和结构合理布局多方考虑,确定防热大底采用大面积烧蚀层和背壁玻璃钢蜂窝夹层结构、整体玻璃钢环的复合结构形式。经过大面积烧蚀计算与温度场分析、局部突起物烧蚀计算与温度场分析、防热大底受气动外压计算分析、静力计算分析以及详细的结构设计,设计出的防热大底较联盟号防热大底轻,结构比“双子星座号”飞船的防热大底简单。经过一系列的地面试验和神舟飞船的三次成功飞行试验,防热大底设计的正确性、合理性得到了充分验证。  相似文献   

10.
室温固化RT-Ⅲ防热涂层及其应用   总被引:7,自引:0,他引:7  
介绍了RT-Ⅲ防热涂料的性能,并分析了增加研磨工序后,由于填料颗粒度降低给涂层力学性能和隔热效果带来的影响。在特定环境下,经风洞试验,0.5mm厚的防热涂层比无涂层的基材背温降低约200℃左右;目前,该涂料已成功地用于固体火箭发动机外防热和火箭的舵面、舱体的防热。  相似文献   

11.
针对火箭飞行工作中高空发动机燃料主管路系统防热罩存在热防护能力不足的问题,开展了高空羽流条件下的仿真计算和分析,依据温度计算值确定了防热罩紧固件在高温下抗拉伸强度低,在较高拧紧力矩条件下存在锌、镉脆断裂的薄弱环节,从而导致防热罩脱落。防热罩脱落后其内充填的隔热包覆材料被羽流吹落,燃料主汽蚀管连接法兰直接暴露在高温羽流环境中,高温导致法兰连接及密封失效从而产生燃料泄漏。针对防热罩热防护设计中存在的薄弱环节完成了设计改进,采用头锥形防热罩、高温合金材料的紧固件和多层耐高温隔热材料捆扎包覆等设计改进方案后,经过了高温、振动、地面发动机热试车和飞行试验验证,未出现前述故障。  相似文献   

12.
以某运载器助推前连杆防热罩为研究对象,建立了热力耦合分析数学模型。利用ANSYS有限元软件对不同温度下助推器前连杆防热罩进行了强度、刚度分析计算,得到防热罩各部件的应力和屈曲形态等结果,当环境温度从20℃上升到200℃后,防热罩承受外压屈曲载荷从676kPa降低至313kPa,外压破坏载荷从780kPa降低至165kPa,并分析该结构在工作环境下的极限承载能力。  相似文献   

13.
为与美国航天飞机争夺世界卫星发射市场,欧洲急于研制自己的下一代空间运载工具.“霍托尔”水平起降单级入轨空天飞机便是吸引人的方案之一.“霍托尔”的新颖之处是采用组合式发动机—RB545吸气式氢氧发动机.这种发动机兼有空气喷气发动机和火箭发动机两者的优点.“霍托尔”在结构和气动布局设计、材料选择和防热措施方面也有许多独到之处.最后介绍“霍托尔”的飞行方案和飞行程序.  相似文献   

14.
发动机底部热环境的准确预示是小型运载火箭研制的关键环节。为提升对小型运载器底部热环境的认识,开展了发动机喷流干扰对底部对流加热影响的研究。首先,采用计算流体力学方法,开展了发动机喷流流动的数值计算研究,分析了飞行高度、发动机开关机、飞行攻角对底部对流加热的影响;然后,从流动机理出发,提出了一种降低底部对流加热的外形优化方法;最后,根据飞行试验测量结果,讨论了底部加热的主要来源。  相似文献   

15.
这一问题是建立在美国航宇局认定防热受损并构成威胁的基础之上的。事实上,该局工程师们仔细研究发射录像后得出了脱落的泡沫不会造成严重后果的结论。他们不知道防热瓦是否已脱落,但认为航天飞机仍处于安全状态。基于这种思想,他们并未采取进一步措施。话说回来,即使认定防热瓦需要修补,那么通过太空行走来解决这一问也是十分危险的。  相似文献   

16.
本文使用数理统计的方法判断固体发动机为外防热涂层厚度的质量情况。  相似文献   

17.
液体火箭发动机制造技术发展现状   总被引:1,自引:0,他引:1  
以欧洲阿里安系列火箭为例,介绍了发动机的制造技术发展情况,详细论述了推力室及涡轮泵的几大部件所采取的工艺技术,通过对液体火箭发动机制造技术现状的分析,说明了制造技术的发展不仅为发动机采用新结构、新材料创造了条件,而且还促进了发动机性能的提高。  相似文献   

18.
航天飞行器进入大气层时经受强烈的气动加热,需借助于热防护系统以保护其免受气动热的伤害;飞行器机翼前缘和鼻罩是最高温区,该处的温差相当大,热防护措施尤其重要。作为热防护系统一方面要抵抗强热的冲击,另一方面要最大限度地减少气动热传入结构的内壁,这就对防热系统所用材料提出不同的要求。抗热冲击要求材料质密而隔热但又要求质轻,这就是矛盾所在。随着复合材料的发展,这对矛盾可以通过利用不同材料特性把防热系统分层来解决,从而导致一体化设计的概念和方法。本文利用热传导理论对两层结构的防热系统进行一体化设计分析。  相似文献   

19.
确定了栅格翼防热涂层结构和制备工艺。涂层结构为:“等离子喷涂铝包镍涂层+等离子喷涂氧化铝涂层+高温耐热胶层”,涂层的制备工艺包括吹砂、底层喷涂、氧化铝喷涂。介绍了高温耐热胶的研制过程和栅格翼防热涂层经受发动机喷流试验的情况。  相似文献   

20.
某运载火箭三级贮箱滑行段热分析计算   总被引:2,自引:0,他引:2  
包轶颖  钟奇 《上海航天》2006,23(3):19-22,48
为保证某火箭三级发动机二次启动的可靠性,在分析滑行段热环境的基础上,用I-DEAS TMG软件时三级贮箱内增压气体、推进剂、固壁进行气液固三相耦合热分析。建立了简化的有限元模型,并综合考虑高温喷管延伸裙、空间外热流、三级底部各部件的遮挡等因素,计算了滑行段期间不同太阳入射角工况下的温度变化。计算和分析结果表明,高温喷管的辐射是影响三级底部热环境的主要因素。该运载火箭三级各部位温度变化能满足发动机二次启动的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号