首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 234 毫秒
1.
国际标准组织在冲击、振动部分专业术语(ISO 2041)中有一条关于位移、速度、加速度冲击谱的解释(条款3.29),我们认为有不妥之处,在此提出,希与大家讨论。该条内容为:位移、速度、加速度冲击响应谱分别定义为S_d=X≈V/ω≈A/ω~2 (1)S_v=ωX≈V≈A/ω (2)S_a=ω~2X≈ωV≈A (3)共中X、V、A分别代表一组单自由度系统对给定的冲击激励的最大(相对)位移响应、最大相对速度响应、最大(绝对)加速度响应。上述定义可用语言解释为:位移冲击谱是最大相对位移响应谱,它近似等于相对速度  相似文献   

2.
本文用群表示理论和复向量理论证明了Grothendieck代数的一些性质,特别是关于Grothendieck代数基的描述,即设B为K_G(X)的基,Θ={(θ,ρ)|θ是G在X上的轨道,ρ是G_x的一个不可约表示,x∈θ},其中G_x={g∈G|gx=x},则存在1—1对应f:B→Θ使得对于任意V∈B,f(v)=(θ,ρ):V_y≠0<==>y∈θ,且ρ是G_x在V_x上的一个不可约表示,x∈θ,利用这一性质,本文给出了一个求Grothendieck代数的特征标的方法,从而改进了由Luszrig,G.在文[1]中提出的方法,并且给出二面体群D_n关于其一些子群H的Grotheodieck代数的特征标表。  相似文献   

3.
频率辨     
本文目的在于辨明单自由度粘性阻尼线性系统的各种特性频率:固有频率w_0(共振频率,相位共振频率,速度振幅共振频率),自然频率w_n,(位移)振幅共损频率Ω_(ad),和加速度振幅共振频率Ω_(aa)。Ω_(ad)相似文献   

4.
本文设计了求解Lyapunov矩阵方程的一种新方法。所考虑的矩阵方程是 AX—XB=C(1)其中A,B,C分别是m×m,n×n和m×n的已知矩阵。 该方法首先是将系数矩阵A,B初等相似约化为三对角矩阵,即存在可逆矩阵U,V,使U~(-1)AU=A,V~(-1)BV=B,其中A,B为三对角矩阵。然后设计了矩阵方程AY—YB=C的公式解法,分三步: 1)求f(λ)=det(λI—A)的λ各次幂的系数a_0,…,a_m; 2)计算sum from i=1 to m (A_(m-i)-CB~(m-i)),f(B); 3)求解Y。解方程AY—YB=C的方法称为THR算法。 最后经逆变换获得原矩阵方程(1)的解X。 求解矩阵方程(1)的方法称为R—THR算法。该方法的计算量约为m~3+4/3n~3+7m~2n+5nm~2+m~2。 本文给出了R—THR的串行计算的数值例子,并给出了THR算法的并行计算格式。最后通过几种数值方法的比较,表明该方法是可行的,也是有效的。  相似文献   

5.
本文讨论平方阻尼(以参数a表征)在图(1)所示的缓冲系统中的作用,结果表明:平方阻尼对于降低相对位移峰值d_m总有良好的效果,但不一定降低加速度峰值a_m。在一定速度冲击V下,系统的平方阻尼有两种最佳值,使a_m最小的a_(am)和使缓冲效率γ最高的a_(cm),而平方阻尼最佳条件依赖于系统的缓冲弹簧的刚度变化类型: (1)线性弹簧情况:a_(am)=a_(cm),最佳条件为系统在首程中均匀减速; (2)渐硬弹簧情况:a_(am)=a_(cm),最佳条件为系统在首程中初始和终末加速度相等即; aV~2=ω_0~2q(dm) (3)渐软弹簧情况:a_(cm)>a_(am)。 本文的基础是所谓“首程显峰”,假定即系统在速度冲击V下的响应峰值d_m和a_m出现在第一行程中。当平方阻尼值不太小,缓冲弹簧刚度特性接近反对称时,该假定成立。  相似文献   

6.
一问题的提出在导弹或宇宙飞船——运载火箭的整个飞行过程中,由于各级发动机点火,关机,级间分离,天线罩抛射等动作造成仪器仓内各种设备的瞬态环境。这种环境的特点是:(1)加速度时间历程是复杂振荡型脉冲。(2)作用时间很短(以毫秒为单位)。(3)加速度幅值较大而速度和位移较小。十几年来,对这种瞬态环境的试验模拟一直是以冲击响应峰值等效为原则的。但冲击的破坏机理较复杂,冲击谱相同的脉冲并不一定引起相同的破坏。因此为了更真实地模拟瞬态环境,除了满足冲击谱的要求之外,必须使模拟波形尽量接近瞬态环境。国外对瞬态环境的模拟早期是用跌落式冲击机产生半正弦单脉冲。由于这种脉冲环境和  相似文献   

7.
有限元技术有两个内容:一个是把连续体分成许多离散元素,第二是在这些离散元素的联结点上假设一些条件。我们把这些联结点称之为接点或节点。有限元技术之所以大量使用,很大程度是由于高性能数字计算机的发展。种类繁多的有限元软件可从各个渠道取得。这些软件中大多数用的是刚度法而不是挠度法。刚度法用的静力分析矩阵方程可写成:{F}=[K]{X}(1)式中:{F}=力矢量列阵.[K]=刚度方阵.{X}=位移矢量列阵若设{X}=1,刚度矩阵就表示引起单位位移的力。  相似文献   

8.
设薄圆筒以X轴为轴,二端面各为x=-1,x=1。当静电平衡时面电荷密度σ(x)满足积分方程: integral from -1 to 1 G(x∣x′)σ(x′)dx′=常数 (1)设:U(x):=integral from 0 to x σ(x)dx (2)并令:g(U,U′)=G(x∣x′) (3)(1)可表为:ingegral g(U,U′)dU′=常数 (4)对于二维(即圆筒半径为无穷大)情形,(4)的解为 U=2/πsin~(-1)x (5)现以此作为一般情形的尝试解: (ⅰ)把这U区间(-1,1)作2n等分,在与U=-1,-1 2/n,……,1-2/n,1相应的n 1圆环上分布线电荷,其密度各为q_1,q_1 q_2,……,q_(n-1) q_n,q_n,使它们在与U=-1 1/n,……,1-1/n相应的n个圆环上产生相同的电位,对应于(4)可列出n阶线性方程组。 (ⅱ)解出q_1,q_2,…q_n。对于二维情形,可证: q_1=q_2=……q_(n-1) (6)对于一般情形并不如此,但可由此构成新的x-U曲线。 反复(ⅰ),(ⅱ),直到(6)近似满足而使x-U曲线稳定为止。 本法对粗圆筒特别适用,沿圆筒长度不取等分点,而是电荷越密集,取点越密,因而节省计算量,但仍提高了精密度.  相似文献   

9.
设通过保角变换: ζ=x+jy=Aζ_1+A_1ζ_1~(-1)+A_2ζ_2~(-2)+……使无限长导体柱的正截面外部变成ζ_1平面上的单位园外部。由二维的Helmholtz公式出发,求得当波长远较柱截面尺寸为大的平面电磁波以垂直于柱轴的方向投射时: (1)E_1平行于柱轴,E_1=exp[jb(ycosα-xsinα)],则远区衍射场 (2)H_1平行于柱轴,H_1=exp[jk(ycosα-xsina)],则远区衍射场 其中:S=截面积, u=cosθ+jsinθ=(x+jy/γ), p=2π(∈μ)(1/2)A(e~(jα)A_1-e~(jα)A),p=P_α+jP_y所相应的矢量P=i_xP_x+i_yP_y就是导体柱在入射波的电场下所感应的等效电矩。 在椭柱(长短半径各为a,b)的情形中: A=(a+b)/2,A_1=(a-b)/2,S=πaba=b就是圆柱的情形;b=0就是薄片的情形,利用Babinet原理,可推得平面上无限长开槽的情形——此二情形都已有准确解,与本文结果相比较,当ka→0时,只差高阶无限小。  相似文献   

10.
研究了动力系统模态参数的ITD(Ibrahim Time Domain)识别法原理,指出它的实质在于自由振动函数列阵u(t)按模式以最小二乘拟合矩阵A和B。讨论了以虚拟站扩展有效测量站和设置过量待识别模态吸收测量噪声的细节。 提出了自由振动信息综合的概念。指出:在测量站位置和数量一定的条件下,不同来源的位移、速度和加速度自由振动时间历程或它们的时移后的时间历程的线性组合,都可以作为一个供识别计算用的“自由振动”。这样,在一次识别计算中,将可以充分利用手头有的一次或多次实测数椐,使模态参数识别更完全或提高信噪比。重点研究了一次自由振动数据的综合:自由振动信息随机减量,并提出设置一个新的用户选择参数NRNDEC(Number of Random Decrement Times)——随机减量次数。 提出了两种检验识别得的模态参数可靠性的方案:1.在实测自由振动信息中混入若干个人为的“检验模态”;2.模态分量因子识别和自由振动预计。前者是把计算机模拟识别试验成果用于实际识别的桥梁,很简单,但很直观,很有效。  相似文献   

11.
本文主要结果为下述定理。 定理:设x(uw)是矩形域上关于该矩形上均匀分割的二维双三次样条插值函数,且x(uw)满足条件(5),则x(uw)在矩形域R边界上的节点处的四阶混合偏导数有估计式: |S_(i,0)|≦|A[i,n—1]||ε_(n,0)| |B[i,n—2]||ε_(0,0)|=[0,-4,(-1)~2 4,…(-1)~i 4]/[0,-4,(-1)~2…(-1)~n 4]|ε_(n,0)| sum from h=i to n-2 (-1)~(k(k-2)-(i 1)(i-2))[0,-4,(-j)~2 4…(-1)~i 4]/[0,-4,(-1)~2 4,…(-1)~(k 1) 4][0,-4,(-1)~2 4,…,(-1)~(k 2)4] (-1)~(i(i 1)/2)/[0,-4,(-1)~2 4,…(-1)~n 4]|ε_(0,0)|其中等号成立的条件分别为: A[i,n—1] B[i,n—2] ε_(n0),ε_(00)>0 A[i,n—1] B[i,n—2] ε_(nm),ε_(0m)>0 其中 i=1,2,…,n—1. j=1,2 …,m—1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号