首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been known for some time that adequate assessment of spacecraft shield requirements and concomitant estimates of astronauts radiation exposures from galactic cosmic radiation requires accurate, quantitative methods for characterizing these radiation fields as they pass through thick absorbers. The main nuclear interaction processes involved are (1) nuclear elastic and inelastic collisions, and (2) nuclear breakup (fragmentation) and electromagnetic dissociation (EMD). Nuclear fragmentation and EMD are important because they alter the elemental and isotopic composition of the transported radiation fields. At present, there is no suitably accurate theory for predicting nuclear fragmentation cross sections for all collision pairs and energies of interest in space radiation protection. Typical cross-section differences between theory and experiment range from about 25 percent to a factor of two. The resulting errors in transported flux, for high linear energy transfer (LET) particles, are comparble to these cross-section errors. In this overview, theoretical models of heavy ion fragmentation currently used to generate input data bases for cosmic-ray transport and shielding codes are reviewed. Their shortcomings are discussed. Further actions needed to improve their accuracy and generality are presented.  相似文献   

2.
Understanding the interactions and propagations of high energy protons and heavy ions are essential when trying to estimate the biological effects of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) on personnel in space. To be able to calculate the shielding properties of different materials and radiation risks, particle and heavy ion transport codes are needed. In all particle and heavy ion transport codes, the probability function that a projectile particle will collide within a certain distance x in the matter depends on the total reaction cross sections, and the calculated partial fragmentation cross sections scale with the total reaction cross sections. It is therefore crucial that accurate total reaction cross section models are used in the transport calculations. In this paper, different models for calculating nucleon–nucleus and nucleus–nucleus total reaction cross sections are compared with each other and with measurements. The uncertainties in the calculations with the different models are discussed, as well as their overall performances with respect to the available experimental data. Finally, a new compilation of experimental data is briefly presented.  相似文献   

3.
The completion of the international space station (ISS) in 2011 has provided the space research community an ideal proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the validation of radiation environmental models, nuclear transport codes and nuclear reaction cross sections. Indeed, prior measurements on the space transportation system (STS; shuttle) provided vital information impacting both the environmental models and the nuclear transport code developments by indicating the need for an improved dynamic model of the low Earth orbit (LEO) trapped environment. Additional studies using thermo-luminescent detector (TLD), tissue equivalent proportional counter (TEPC) area monitors, and computer aided design (CAD) model of earlier ISS configurations, confirmed STS observations that, as input, computational dosimetry requires an environmental model with dynamic and directional (anisotropic) behavior, as well as an accurate six degree of freedom (DOF) definition of the vehicle attitude and orientation along the orbit of ISS.  相似文献   

4.
A critical need for NASA is the ability to accurately model the transport of heavy ions in the Galactic Cosmic Rays (GCR) through matter, including spacecraft walls, equipment racks, etc. Nuclear interactions are of great importance in the GCR transport problem, as they can cause fragmentation of the incoming ion into lighter ions. Since the radiation dose delivered by a particle is proportional to the square of (charge/velocity), fragmentation reduces the dose delivered by incident ions. The other mechanism by which dose can be reduced is ionization energy loss, which can lead to some particles stopping in the shielding. This is the conventional notion of shielding, but it is not applicable to human spaceflight since the particles in the GCR tend to be too energetic to be stopped in the relatively thin shielding that is possible within payload mass constraints. Our group has measured a large number of fragmentation cross sections, intended to be used as input to, or for validation of, NASA’s radiation transport models. A database containing over 200 charge-changing cross sections and over 2000 fragment production cross sections has been compiled. In this report, we examine in detail the contrast between fragment measurements at large acceptance and small acceptance. We use output from the PHITS Monte Carlo code to test our assumptions using as an example 40Ar data (and simulated data) at a beam energy of 650 MeV/nucleon. We also present preliminary analysis in which isotopic resolution was attained for beryllium fragments produced by beams of 10B and 11B. Future work on the experimental data set will focus on extracting and interpreting production cross sections for light fragments.  相似文献   

5.
An accurate understanding of the physical interactions and transport of space radiation is important for safe and efficient space operations. Secondary particles produced by primary particle interactions with intervening materials are an important contribution to radiation risk. Pions are copiously produced in the nuclear interactions typical of space radiations and can therefore be an important contribution to radiation exposure. Charged pions decay almost exclusively to muons. As a consequence, muons must also be considered in space radiation exposure studies. In this work, the NASA space radiation transport code HZETRN has been extended to include the transport of charged pions and muons. The relevant transport equation, solution method, and implemented cross sections are reviewed. Muon production in the Earth’s upper atmosphere is then investigated, and comparisons with recent balloon flight measurements of differential muon flux are presented. Muon production from the updated version of HZETRN is found to match the experimental data well.  相似文献   

6.
Safe and efficient mission operations in space require an accurate understanding of the physical interactions of space radiation. As the primary space radiation interacts with intervening materials, the composition and spectrum of the radiation environment changes. The production of secondary particles can make a significant contribution to radiation exposure. In this work, the NASA space radiation transport code, HZETRN, is extended to include the transport of electrons, positrons, and photons. The production of these particles is coupled to the initial cosmic ray radiation environment through the decay of neutral pions, which produce high energy photons, and through the decay of muons, which produce electrons and positrons. The photons, electrons, and positrons interact with materials producing more photons, electrons and positrons generating an electromagnetic cascade. The relevant cross sections, transport equation, and solution method are introduced. Electron and positron production in Earth’s atmosphere is investigated and compared to experimental balloon-flight measurements. Reasonable agreement is seen between HZETRN and data.  相似文献   

7.
We describe the differential energy spectrum of trapped particles measured by a solid-state charged particle telescope in the mid-deck of the Space Shuttle during the period of solar maximum. The telescope was flown in two high altitude flights at 28.5° and 57° inclination. Assuming, as is normally done, that the variations of Shuttle orientation during the missions lead to average isotropic incident spectra, the observed spectrum disagrees significantly from AP8 model calculations. This indicates the need to take into consideration the variations of solid-angle direction relative to the magnetic field. The measurements show that there is a very significant flux of secondary light ions. The energy spectra of these ions does not agree with the production spectrum from radiation transport calculations based on omni-directional AP8 Max model as an input energy spectrum.

We also describe measurements of linear energy transfer spectra using a tissue equivalent proportional counter (TEPC) flown both in the mid-deck and the payload bay of the Space Shuttle. Comparisons are made between linear energy transfer spectral measurements AP8 model-based radiation transport predictions, and thermoluminescent dosimeter (TLD) measurements. The absorbed dose-rate measurements using TLD's are roughly 25% lower than the TEPC-measured dose rate measurements.  相似文献   


8.
Measurements taken in Low Earth Orbit (LEO) onboard the International Space Station (ISS) and transit vehicles have been extensively used to validate radiation transport models. Primarily, such comparisons were done by integrating measured data over mission or trajectory segments so that individual comparisons to model results could be made. This approach has yielded considerable information but is limited in its ability to rigorously quantify and differentiate specific model errors or uncertainties. Further, as exploration moves beyond LEO and measured data become sparse, the uncertainty estimates derived from these validation cases will no longer be applicable. Recent improvements in the underlying numerical methods used in HZETRN have resulted in significant decreases in code run time. Therefore, the large number of comparisons required to express error as a function of a physical quantity, like cutoff rigidity, are now possible. Validation can be looked at in detail over any portion of a flight trajectory (e.g. minute by minute) such that a statistically significant number of comparisons can be made. This more rigorous approach to code validation will allow the errors caused by uncertainties in the geometry models, environmental models, and nuclear physics models to be differentiated and quantified. It will also give much better guidance for future model development. More importantly, it will allow a quantitative means of extrapolating uncertainties in LEO to free space. In this work, measured data taken onboard the ISS during solar maximum are compared to results obtained with the particle transport code HZETRN. Comparisons are made at a large number (∼77,000) of discrete time intervals, allowing error estimates to be given as a function of cutoff rigidity. It is shown that HZETRN systematically underestimates exposure quantities at high cutoff rigidity. The errors are likely associated with increased angular variation in the geomagnetic field near the equator, the lack of pion production in HZETRN, and errors in high energy nuclear physics models, and will be the focus of future work.  相似文献   

9.
We have measured charged nuclear fragments produced by 1 GeV/nucleon 56Fe ions interacting with aluminium, polyethylene and lead. These materials are relevant for assessment of radiation risk for manned space flight. The data will be presented in a form suitable for comparison with models of nuclear fragmentation and transport, including linear energy transfer (LET) spectrum, fluence for iron and fragments, event-tack- and event-dose-averaged LET, total dose and iron contribution to dose.  相似文献   

10.
The main point of the paper is to use the simultaneous measurements of the energetic particle flux by TriTel and those of electron density by a Langmuir probe to study the question of to what extent solar electromagnetic and corpuscular radiation (galactic cosmic rays, particle precipitation from the radiation belts) are responsible for the ionization of the atmosphere. The electron density measured by the Langmuir probe is the sum of the ionization produced by the solar electromagnetic radiation and that due to the corpuscular radiation. The ionization produced by the solar electromagnetic radiation may be computed. The flux of energetic particles in an energy range may be determined by taking the difference between the threshold energy of the TriTel telescopes and the energy corresponding to the local cut-off rigidity. As the ESEO satellite will have a quasi-polar and circular orbit, the cut-off rigidity will change from low to high latitudes, thus enabling the assignment of different energy bands for the telescopes. Thus, it will be possible to determine which energy bands of particle produce ionization at different latitudes.  相似文献   

11.
The health risks associated with exposure to various components of space radiation are of great concern when planning manned long-term interplanetary missions, such as future missions to Mars. Since it is not possible to measure the radiation environment inside of human organs in deep space, simulations based on radiation transport/interaction codes coupled to phantoms of tissue equivalent materials are used. However, the calculated results depend on the models used in the codes, and it is therefore necessary to verify their validity by comparison with measured data. The goal of this paper is to compare absorbed doses obtained in the MATROSHKA-R experiment performed at the International Space Station (ISS) with simulations performed with the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS). The absorbed dose was measured using passive detectors (packages of thermoluminescent and plastic nuclear track detectors) placed on the surface of the spherical tissue equivalent phantom MATROSHKA-R, which was exposed aboard the ISS in the Service Zvezda Module from December 2005 to September 2006. The data calculated by PHITS assuming an ISS shielding of 3 g/cm2 and 5 g/cm2 aluminum mass thickness were in good agreement with the measurements. Using a simplified geometrical model of the ISS, the influence of variations in altitude and wall mass thickness of the ISS on the calculated absorbed dose was estimated. The uncertainties of the calculated data are also discussed; the relative expanded uncertainty of absorbed dose in phantom was estimated to be 44% at a 95% confidence level.  相似文献   

12.
We present measurements of LET spectra for near earth orbits with various inclinations and altitudes. A comparison with calculated LET spectra shows that the contribution from direct ionizing galactic cosmic rays is well described by the models. An additional contribution to the spectra originates from stopping protons and from nuclear interactions of particles with material. In the case of an interaction a large amount of energy is deposited in a small volume by target recoils or target fragments. These events will be called short range (SR) events. For a low inclination orbit radiation belt protons are the main source of these events while galactic protons become more important when increasing the inclination to near polar orbits. We show that the contribution of SR events for orbits with low altitude (324 km) and 57 degrees inclination is comparable to that for an orbit with 28 degrees inclination at a high altitude (510 km).  相似文献   

13.
The development of the theory of high charge and energy (HZE) ion transport is reviewed. The basic solution behavior and approximation techniques will be described. An overview of the HZE transport codes currently available at the Langley Research Center will be given. The near term goal of the Langley program is to produce a complete set of one-dimensional transport codes. The ultimate goal is to produce a set of complete three-dimensional codes which have been validated in the laboratory and can be applied in the engineering design environment. Recent progress toward completing these goals is discussed.  相似文献   

14.
15.
Long-term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures and vehicles. It is necessary to expose the numerical tools commonly used in radiation analyses to extensive verification, validation and uncertainty quantification. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions and that an extremely fine energy grid is required to resolve the problem under the current formulation. Since adding a sufficient number of energy points will render the code computationally inefficient, we revisit the light ion and neutron transport theory developed for HZETRN and focus on neutron elastic interactions. Two numerical methods (average value and collocation) are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. An energy grid convergence study is conducted to demonstrate the improved stability of the new methods. Based on the results of the convergence study and the ease of implementation, the average value method with a 100 point energy grid is found to be suitable for future use in HZETRN.  相似文献   

16.
Recent work has indicated that pion production and the associated electromagnetic (EM) cascade may be an important contribution to the total astronaut exposure in space. Recent extensions to the deterministic space radiation transport code, HZETRN, allow the production and transport of pions, muons, electrons, positrons, and photons. In this paper, the extended code is compared to the Monte Carlo codes, Geant4, PHITS, and FLUKA, in slab geometries exposed to galactic cosmic ray (GCR) boundary conditions. While improvements in the HZETRN transport formalism for the new particles are needed, it is shown that reasonable agreement on dose is found at larger shielding thicknesses commonly found on the International Space Station (ISS). Finally, the extended code is compared to ISS data on a minute-by-minute basis over a seven day period in 2001. The impact of pion/EM production on exposure estimates and validation results is clearly shown. The Badhwar–O’Neill (BO) 2004 and 2010 models are used to generate the GCR boundary condition at each time-step allowing the impact of environmental model improvements on validation results to be quantified as well. It is found that the updated BO2010 model noticeably reduces overall exposure estimates from the BO2004 model, and the additional production mechanisms in HZETRN provide some compensation. It is shown that the overestimates provided by the BO2004 GCR model in previous validation studies led to deflated uncertainty estimates for environmental, physics, and transport models, and allowed an important physical interaction (π/EM) to be overlooked in model development. Despite the additional π/EM production mechanisms in HZETRN, a systematic under-prediction of total dose is observed in comparison to Monte Carlo results and measured data.  相似文献   

17.
18.
Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the main source of energetic H and He isotopes nuclei in the radiation belt. This paper reports on the specified calculations of these isotope intensities using various inner zone proton intensity models (AP-8 and SAMPEX/PET PSB97), the atmosphere drift-averaged composition and density model MSIS-90, and cross-sections of the interaction processes from the GNASH nuclear model code. To calculate drift-averaged densities and energy losses of secondaries, the particles were tracked in the geomagnetic field (modelled through IGRF-95) by integrating numerically the equation of the motion. The calculations take into account the kinematics of nuclear interactions along the whole trajectory of trapped proton. The comparison with new data obtained from the experiments on board RESURS-04 and MITA satellites and with data from SAMPEX and CRRES satellites taken during different phases of solar activity shows that the upper atmosphere is a sufficient source for inner zone helium and heavy hydrogen isotopes. The calculation results are energy spectra and angular distributions of light nuclear isotopes in the inner radiation belt that may be used to develop helium inner radiation belt model and to evaluate their contribution to SEU (single event upset) rates.  相似文献   

19.
20.
Instruments and methods recently used for space radiation dosimetry are reviewed for the purposes of comparison and reference. Passive detection methods mentioned include track-etch, luminescent, nuclear emulsion, and metal foil detectors. These can provide a reliable source of data for all types of radiation, but often require processing that cannot occur in space. Experimental methods of LET determination using TLDs, such as the high temperature peak ratio (HTR) method, are also discussed. Portable readout passive detectors including Pille, MOSFET, and bubble detector systems provide a novel alternative to traditional passive detectors, but research is more limited and their widespread use has yet to be established. Active detectors including DOSTEL, CPDS, RRMD-III, TEPC, R-16, BBND, and the Liulin series are examined for technical details. These instruments allow the determination of dose in real-time, and some can determine LET of incident particles by measuring energy deposition over a known path-length, but size and power consumption limit their practical use for dosimetry. Improved neutron dosimetry and development of a small active or portable readout personnel dosimeter capable of accurate LET determination are important steps for managing the effects of long-term exposure to the space radiation environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号