首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AGHF is a Bridgman Furnace Facility for directional solidification experiments in microgravity environment with very well controlled heater temperatures up to 1400°C. A laboratory model and an engineering model exist, the flight model will be built at the end of 1991. The furnace uses heater elements made of W-Re wire wound on a solid TZM heat diffuser, diffuser temperature control by Pt/PtRh thermocouples to ±0.2 K, and a water cooled cooling zone regulated by a thermostatic valve to ±0.3 K. AGHF experiments use front loaded cartridges, which can use conductive coupling to the cooling zone by a liquid metal ring or radiative cooling. The laboratory model furnace, mounted in a dedicated vacuum chamber with peripherals controlled by a commercial computer, was intensively tested up to 1400°C, as specified for the AGHF by ESA, and at 1500°C in a life test under a technology development programme of ESA. Notable laboratory model results are gradients of 95 K/cm in solid Ni of 18 mm dia, with conductive cooling zone coupling by liquid metal, and 70 K/cm with radiative cooling in ZrO2. EM test are not yet complete, but first tests indicate similar or better results, especially of gradient constancy vs pulling stroke over 140 mm. The first heater model sustained 400 h at 1000°C, 800 h at 1300°C, and 400 h at 1500°C.  相似文献   

2.
In the first Spacelab Mission which will take place in Sept. Oct. 1983 a Metric Camera will be flown as part of the Earth observation payload. The camera will be a modified high quality Aerial Survey Camera.The hardware development is finished and the instrument is already integrated into Spacelab.The application of Metric Cameras in Space, an area which is neglected up to now, can effectively contribute to an improved cartographic coverage of the Earth. The Metric Camera Experiment is a first step to fill this gap which can be realized by utilizing the extended capacities of the Space Transportation System.The paper outlines the scientific objectives of the experiment, describes in detail the camera system and deals with the operation and control philosophy during the mission.  相似文献   

3.
At present, the Institute of Nuclear Physics of Moscow State University, in cooperation with other organizations, is preparing space experiments onboard the Lomonosov satellite. The main goal of this mission is to study extreme astrophysical phenomena such as cosmic gamma-ray bursts and ultra-high-energy cosmic rays. These phenomena are associated with the processes occurring in the early universe in very distant astrophysical objects, therefore, they can provide information on the first stages of the evolution of the universe. This paper considers the main characteristics of the scientific equipment aboard the Lomonosov satellite.  相似文献   

4.
It is well known that temperature- and watervapour-profiles, ozone concentration, other atmospheric constituents and the surface-radiation of the Earth can be determined by remote sensing in the IR radiation range with the aid of a satellite.

The narrow-band radiation measurements for remote sensing of the atmosphere and the Earth-surface can be realized either by various radiometers working in selected frequency channels or, continuously in a given frequency range, by spectrometers with fixed spectral resolution.

Fourier-spectrometers (FS) have been used in Earth-orbit only four times up to now: Nimbus 3, Nimbus 4, Meteor 25 and Meteor 28.

The most important technical parameters, the working regime and some aspects of date processing of the FSs working aboard of Meteor 25 and Meteor 28 are given. For the determination of calibrated absolute spectra a method is used that is based on the experience of the first experiment and on the long time stability of the spectrometers. The results obtained in laboratory calibration tests and in the orbit are described.  相似文献   


5.
Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully.  相似文献   

6.
The DACON instrument for studying the convection caused by low frequency microaccelerations aboard spacecraft is described. The convection sensor serves as a measuring element of this instrument. This is a cylindrical cavity filled with air, where two crossed differential thermocouples are located. The thermocouple junctions lay on two mutually perpendicular lines parallel to the bases of the cylinder and crossing at its axis. The distances from the junctions to this axis are equal. The lateral surface of the cylinder is thermally insulated, the difference of temperatures on its bases being kept constant. One of the tasks for the sensor is to prepare the data for checking the adequacy of mathematical models of fluid convection under weightlessness conditions and for obtaining quantitative characteristics of the microgravitational medium. The results of ground-based tests of the DACON instrument and the results of experiments with it aboard the Mirstation are presented.  相似文献   

7.
Under conditions of microgravity severe alterations in body fluid composition and volume take place largely as a result of "cardiothoracic pooling" or headward shift of blood. Inappropriate endocrine, renal and cardiovascular responses result from the "misreading" of homeostatic signals by physiological receptors to produce an as yet incompletely defined syndrome under microgravitational conditions.  相似文献   

8.
Thermoluminescent (TL) detectors were used for dosimetric investigations on the outer surface as well as inside Soviet spacecrafts of the "Cosmos" series. At the outer surface, ultrathin TL detectors, based on CaF2-PTFE and LiF, were arranged in special stacks and exposed to unshielded cosmic radiation. The strong decrease of dose within a few mg/cm2 demonstrates that weakly penetrating radiation is dominating in the radiation field under investigation. On the basis of glow curve analysis of LiF thermoluminescent detectors it could be shown, that the high doses are caused by electrons.  相似文献   

9.
Within the space program of the Federal Republic of Germany the microgravity program in connection with the utilization of SPACELAB constitutes a central task which determines the long-term program concepts and also their relation to German participation in future ESA programs.The scientific preparatory programs under way for some years now have made further progress. Extensive flight experience and valuable scientific results were obtained on the basis of successful rocket pre-programs. The present paper describes the process in which scientific and organisational priorities are being defined for the planning and execution of the experimental programs.In order to obtain a sufficient number of flight opportunities, payloads for SPACE SHUTTLE missions, in particular under the NASA GAS Program, as well as experimental equipment such as the materials laboratory (MSDR) for FSLP are being developed. The German program focuses on preparing a German SPACELAB mission D1 planned for 1985, which is intended to verify the applicability and efficiency of manned research laboratories for industry and the scientific community. A second emphasis is on preparing the use of SHUTTLE-supported re-usable space platforms.  相似文献   

10.
Bone loss induced by microgravity during space flight is one of the most deleterious factors on astronaut’s health and is mainly attributed to an unbalance in the process of bone remodeling. Studies from the space microgravity have demonstrated that the disruption of bone remodeling is associated with the changes of four main functional bone cells, including osteoblast, osteoclast, osteocyte, and mesenchymal stem cells. For the limited availability, expensive costs and confined experiment conditions for conducting space microgravity studies, the mechanism of bone cells response and adaptation to microgravity is still unclear. Therefore, some ground-based simulated microgravity methods have been developed to investigate the bioeffects of microgravity and the mechanisms. Here, based on our studies and others, we review how bone cells (osteoblasts, osteoclasts, osteocytes and mesenchymal stem cells) respond and adapt to simulated microgravity.  相似文献   

11.
The control of the body orientation and the center of mass position with respect to the feet was investigated under normo- and microgravity (space flight Altair), during erect posture and at the end of a forward or backward upper trunk movement.

It was observed that during erect posture, the trunk orientation with respect to the vertical was inclined some 6 ° forward in both subjects under microgravity, whereas it was vertical or slightly backward oriented under normogravity. Under microgravity, on the contrary, the initial position CM changed either backwards or forwards. This result suggests that the inclined trunk posture might be due to misevaluating the vertically under microgravity and that different control mechanisms are involved in orienting the trunk and placing the CM.

It was also noted that the final position of the CM at the end of the movement did not differ markedly between microgravity and normogravity. This result suggests that the kinematic synergies which stabilize the CM during uppertrunk movements may result from an automatic central control which is independent from the gravity constraints.  相似文献   


12.
NASA's microgravity fundamental physics program has used the Space Shuttle to perform high resolutions experiments in space. As we come to the end of the Shuttle era, we will begin to perform research aboard the ISS. A large stable of ground based experiments have been selected from NASA Research Announcements in a variety of disciplines. These investigations will form the backbone from which to select future flight candidates. Research in Laser Cooling and Atomic Physics will enable us to operate highly precise clocks in space. Low temperature physics experiments will use a liquid helium facility with a six-month lifetime. This facility can also support experiments in gravitational physics. Researchers in biological physics will be offered an opportunity to develop future experiments that can benefit from space experimentation. An overview of the future research directions and the benefits to the community of performing research aboard the ISS will be presented.  相似文献   

13.
This article is a literary review focused on the problem of the stress-effect of microgravity. Based on the all-round analysis of data from manned missions and space experiments with rats it is concluded that microgravity as a permanent factor of space flight does not produce an intense chronic stress in either humans or animals. On the other hand, microgravity is responsible for deconditioning of a number of vital systems and of the organism as a whole. On return to Earth, the deconditioned bodies of humans and animals exaggerate the usual terrestrial loads due to gravity forces and respond by acute gravitational stress.  相似文献   

14.
国内外钝感弹药评估标准的发展与分析   总被引:1,自引:0,他引:1  
阐述钝感弹药的概念及其评估标准的重要性,介绍国内外钝感弹药评估标准的发展过程及现状,对我国钝感弹药标准发展的现状进行分析并提出建议.  相似文献   

15.
During the past ten years the French laboratories working in the field of fluids and material sciences had access to regular, long-lasting manned missions onboard the Russian MIR Space Station. Beyond the French scientific program that was performed with the ALICE apparatus, a cooperative research program was developed with DLR, NASA and RSA. This cooperation was based on bartered agreements that included the joint utilization of the instruments onboard the MIR station (ALICE, TITUS furnace from DLR, vibration device from RKK Energia) and the funding of dedicated cartridges (DLR) or thermostats (DLR and NASA), as well as launch services (NASA) by the Cooperating Agencies. We present a review of this program with a particular emphasis on its scientific results and on the progress that has been achieved in science and applications. They covered a large field of condensed matter physics, from material sciences to near-critical and off-critical phase separation kinetics and near critical fluid hydrodynamics (thermoacoustic heat transport and vibrational convection). The high microgravity relevance of all these investigations naturally led to outstanding results that was published in the world's best scientific journals. The analysis of the latest experiments performed during the PEGASUS mission shows they will not be an exception to that evaluation. Off-critical phase separation with NASA, pressure-driven piston effect and equiaxed solidification with DLR, heat transport under calibrated vibrations with RKK Energia, all will be presented. The conclusion will stress the international character of this microgravity research program, the conditions of its success and what can be gained from it in the perspective of the space station utilization.  相似文献   

16.
Head-down tilt models have been used as ground-based simulations of microgravity. Our previous animal research has demonstrated that there are significant changes in fluid distribution within 2 h after placement in a 45 degrees head-down tilt (45HDT) position and these changes in fluid distribution were still present after 14 days of 45HDT. Consequently, we investigated changes in fluid distribution during recovery from 16 days of 45HDT. Changes in radioactive tracer distribution and organ/body weight ratio were examined in rats randomly assigned to a 45HDT or prone control group. The 45HDT rats were suspended for 16 days and then allowed to recover at the prone position 0, 77, 101, or 125 h post-suspension. Animals were injected with technetium-labeled diethylenetriamine pentaacetate (99mTcDTPA, MW=492 amu, physical half-life of 6.02 h) and then killed 30 min post-injection. Lungs, heart, liver, spleen, kidneys, and brain were harvested, weighed, and measured for radioactive counts. Statistical analyses included two-way analysis of variance (ANOVA) that compared 45HDT versus controls at the four experimental time points. The organ weight divided by the body weight ratio for the brain, heart, kidneys and liver in the 45HDT rats was significantly different than the control rats, regardless of time (treatment). There was no difference between the different time points (time). The average 99mTcDTPA count divided by the organ weight ratio values for the heart, liver, and spleen were significantly higher in the 45HDT group than the control group. The average counts for the heart and spleen were significantly higher at 77, 101, and 125 h than at time zero. We conclude that the major organs have different recovery patterns after 45HDT for 16 days in the rat.  相似文献   

17.
Deuterium ions D+and doubly-charged helium ions He++have the same mass-to- charge ratio (M/Z= 2) and are not distinguished by the mass-spectrometer. On the basis of analysis of published data, Interkosmos-24satellite data, and theoretical estimations, it is shown that in the ionosphere and plasmasphere the ion with a mass number of two is He++and not D+, at least at altitudes of higher than 600–800 km. Arguments in favor of the validity of this assumption at lower altitudes are presented. Regularities of the dependence of the N(He++)/N(He+) ratio on altitude, time of day, season, and solar activity are derived. It is found that in the daytime the N(He++)/N(He+) ratio decreases with increasing solar activity. The seasonal dependence is most pronounced at nighttime in the altitude interval 1000–2000 km, where this ratio decreases in passing from winter to summer. Peculiarities of the latitude distribution of the absolute and relative values of the He++concentration are found in the Interkosmos-24satellite data. On the basis of the same data, a strong longitude effect in the N(He++) concentration occurring under certain heliogeophysical conditions is discovered, an effect amplitude attaining one order of magnitude on adjacent orbits. An interpretation of this effect is given.  相似文献   

18.
This paper presents an experiment which examined the effects of isolation and confinement during a simulation of a short-term space mission. During the 7-day spaceflight simulation, four Canadian astronauts were tested daily on a 30-min performance task. The task, CAMS (Cabin Air Management System), represents a computer-based simulation of a generic life support system. As a multiple-task environment, it allows the measurement of a wide range of task management variables such as primary and secondary task performance, and system control activities. Measures of subjective state variables were also taken. The results did not show any evidence of serious performance decrements for any crew member. The analysis revealed different adjustment patterns with which crew members responded as a function of mission duration and variations in workload. Among the secondary tasks employed, prospective memory was found to be more sensitive than reaction time to increases in workload. The paper concludes with a discussion of the utility of spaceflight simulations and computer-based simulations of space work.  相似文献   

19.
Humans have mental representation of their environment based on sensory information and experience. A series of experiments has been designed to allow the identification of disturbances in the mental representation of three-dimensional space during space flight as a consequence of the absence of the gravitational frame of reference. This NASA/ESA-funded research effort includes motor tests complemented by psychophysics measurements, designed to distinguish the effects of cognitive versus perceptual-motor changes due to microgravity exposure. Preliminary results have been obtained during the microgravity phase of parabolic flight. These results indicate that the vertical height of handwritten characters and drawn objects is reduced in microgravity compared to normal gravity, suggesting that the mental representation of the height of objects and the environment change during short-term microgravity. Identifying lasting abnormalities in the mental representation of spatial cues will establish the scientific and technical foundation for development of preflight and in-flight training and rehabilitative schemes, enhancing astronaut performance of perceptual-motor tasks, for example, interaction with robotic systems during exploration-class missions.  相似文献   

20.
A primary objective of the International Space Station is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. Since continuous human presence on the space station began in November 2000 through the end of Increment-6, over 1260 hours of crew time have been allocated to research. However, far more research time has been accumulated by experiments controlled on the ground. By the end of the time period covered by this paper (end of Increment-6), the total experiment hours performed on the station are well over 100,000 hours (Expedition 6 Press Kit: Station Begins Third Year of Human Occupation, Boeing/USA/NASA, October 25, 2002). This paper presents the results of the on-going effort by the Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, to characterize the microgravity environment of the International Space Station in order to keep the microgravity scientific community apprised of the reduced gravity environment provided by the station for the performance of space experiments. This paper focuses on the station microgravity environment for Increments 5 and 6. During that period over 580 Gbytes of acceleration data were collected, out of which over 34,790 hours were analyzed. The results presented in this paper are divided into two sections: quasi-steady and vibratory. For the quasi-steady analysis, over 7794 hours of acceleration data were analyzed, while over 27,000 hours were analyzed for the vibratory analysis. The results of the data analysis are presented in this paper in the form of a grand summary for the period under consideration. For the quasi-steady acceleration response, results are presented in the form of a 95% confidence interval for the station during "normal microgravity mode operations" for the following three attitudes: local vertical local horizontal, X-axis perpendicular to the orbit plane and the Russian torque equilibrium attitude. The same analysis was performed for the station during "non-microgravity mode operations" to assess the station quasi-steady acceleration environment over a long period of time. The same type of analysis was performed for the vibratory, but a 95th percentile benchmark was used, which shows the overall acceleration magnitude during Increments 5 and 6. The results, for both quasi-steady and vibratory acceleration response, show that the station is not yet meeting the microgravity requirements during the microgravity mode operations. However, it should be stressed that the requirements apply only at assembly complete, whereas the results presented below apply up to the station's configuration at the end of Increment-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号