首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Tasks envisioned for future generation Mars rovers - sample collection, area survey, resource mining, habitat construction, etc. - will require greatly enhanced navigational capabilities over those possessed by the Mars Sojourner rover. Many of these tasks will involve cooperative efforts by multiple rovers and other agents, adding further requirements both for accuracy and commonality between users. This paper presents a new navigation system a "Self-Calibrating Pseudolite Array" (SCPA) that can provide centimeter-level, drift-free localization to multiple rovers within a local area by utilizing GPS-based transceivers deployed in a ground-based array. Such a system of localized beacons can replace or augment a system based on orbiting satellite transmitters, and is capable of fully autonomous operations and calibration. This paper describes the prototype SCPA developed at Stanford to demonstrate these capabilities and then presents results from a set of field trials performed at NASA Ames Research Center. These experiments, which utilize the K9 Mars rover research platform, validate both the navigation and self-calibration capabilities of the system. By carrying an on-board GPS transceiver, K9 was successfully able to calibrate the system using no a priori position information and localized the pseudolite beacons to under 5 cm RMS.  相似文献   

2.
A novel multi-sensor information fusion methodology for intelligent terrain classification is presented. The focus of this research is to analyze safety characteristics of the terrain using imagery data obtained by on-board sensors during spacecraft descent. This information can be used to enable the spacecraft to land safely on a planetary surface. The focus of our approach is on robust terrain analysis and information fusion in which the terrain is analyzed using multiple sensors and the extracted terrain characteristics are combined to select safe landing sites for touchdown. The novelty of this method is the incorporation of the T-Hazard Map, a multi-valued map representing the risk associated with landing on a planetary surface. The fusion method is explained in detail in this paper and computer simulation results are presented to validate the approach.  相似文献   

3.
We review radio detection of planetary lightning performed by Voyager, Galileo (including in-situ probe measurements), Cassini, and other spacecraft, and compare the information on the underlying physics derived from these observations—especially the discharge duration, at Jupiter and Saturn—with our knowledge of terrestrial lightning. The controversial evidence at Venus is discussed, as well as the prospects for lightning-like discharges in Martian dust-storms (and studies on terrestrial analogues). In addition, lightning sources provide radio beacons that allow us to probe planetary ionospheres. Ground-based observations of Saturn’s lightning have been attempted several times in the past and have been recently successful. They will be the subject of observations by the new generation of giant radio arrays. We review past results and future studies, focussing on the detection challenges and on the interest of ground-based radio monitoring, in conjunction with spacecraft observations or in standalone mode.  相似文献   

4.
ESA's first multi-satellite mission Cluster is unique in its concept of 4 satellites orbiting in controlled formations. This will give an unprecedented opportunity to study structure and dynamics of the magnetosphere. In this paper we discuss ways in which ground-based remote-sensing observations of the ionosphere can be used to support the multipoint in-situ satellite measurements. There are a very large number of potentially useful configurations between the satellites and any one ground-based observatory; however, the number of ideal occurrences for any one configuration is low. Many of the ground-based instruments cannot operate continuously and Cluster will take data only for a part of each orbit, depending on how much high-resolution (burst-mode') data are acquired. In addition, there are a great many instrument modes and the formation, size and shape of the cluster of the four satellites to consider. These circumstances create a clear and pressing need for careful planning to ensure that the scientific return from Cluster is maximised by additional coordinated ground-based observations. For this reason, the European Space Agency (ESA) established a working group to coordinate the observations on the ground with Cluster. We will give a number of examples how the combined spacecraft and ground-based observations can address outstanding questions in magnetospheric physics. An online computer tool has been prepared to allow for the planning of conjunctions and advantageous constellations between the Cluster spacecraft and individual or combined ground-based systems. During the mission a ground-based database containing index and summary data will help to identify interesting datasets and allow to select intervals for coordinated studies. We illustrate the philosophy of our approach, using a few important examples of the many possible configurations between the satellite and the ground-based instruments.  相似文献   

5.
The THEMIS mission includes a comprehensive ground-based measurement network that adds two additional dimensions to the information gained in the night magnetosphere by the five THEMIS spacecraft. This network provides necessary correlative data on the strength and extent of events, enables their onsets to be accurately timed, and provides an educational component in which students have an active participation in the program. This paper describes the magnetometers installed to obtain these ground-based North American magnetic measurements, including the magnetometers installed as part of the educational effort, and the support electronics provided by UCLA for the ground-based observatories. These magnetometers measure the Earth’s magnetic field with high resolution, and with precise timing provided by the Global Positioning System. They represent UCLA’s next generation of low-cost, ground-based magnetometers using an inexpensive personal computer for data collection, storage and distribution. These systems can be used in a stand-alone mode requiring only AC power. If there is Internet connectivity, they can be configured to provide near real-time data over the web. These data are provided at full resolution to the entire scientific community over the web with minimal delay.  相似文献   

6.
This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955–997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.  相似文献   

7.
Eight evaluation metrics are used to compare and contrast three coordination schemes for a system that continuously plans to control collections of rovers (or spacecraft) using collective mission goals instead of goals or command sequences for each spacecraft. These schemes use a central coordinator to either: 1) micromanage rovers one activity at a time; 2) assign mission goals to rovers; or 3) arbitrate mission goal auctions among rovers. A self-commanding collection of rovers would autonomously coordinate itself to satisfy high-level science and engineering goals in a changing partially understood environment - making the operation of tens or even a hundred spacecraft feasible  相似文献   

8.
Mercury is a poorly known planet, since the only space-based information comes from the three fly-bys performed in 1974 by the Mariner 10 spacecraft. Ground-based observations also provided some interesting results, but they are particularly difficult to obtain due to the planet’s proximity to the Sun. Nevertheless, the fact that the planet’s orbit is so close to the Sun makes Mercury a particularly interesting subject for extreme environmental conditions. Among a number of crucial scientific topics to be addressed, Mercury’s exosphere, its interaction with the solar wind and its origin from the surface of the planet, can provide important clues about planetary evolution. In fact, the Hermean exosphere is continuously eroded and refilled by these interactions, so that it would be more proper to consider the Hermean environment as a single, unified system – surface-exosphere-magnetosphere. These three parts are indeed strongly linked to each other. In recent years, the two missions scheduled to explore the iron planet, the NASA MESSENGER mission (launched in March 2004) and the ESA cornerstone mission (jointly with JAXA) BepiColombo (to be launched in 2012), have stimulated new interest in the many unresolved mysteries related to it. New ground-based observations, made possible by new technologies, have been obtained, and new simulation studies have been performed. In this paper some old as well as the very latest observations and studies related to the surface-exosphere-magnetosphere system are reviewed, outlining the investigations achievable by the planned space-based observations. This review intends to support the studies, in preparation of future data, and the definition of specific instrumentation.  相似文献   

9.
The Cluster mission is aimed at the study of small-scale structures that are believed to be fundamental in determining the behaviour of key interactive processes of cosmic plasma. The mission will be controlled from the European Space Operations Centre (ESOC). ESOC is also in charge of the commanding of the scientific payloads on-board the four Cluster spacecraft after negotiation with the Cluster Principal Investigators (PIs) and of collecting and distributing the mission's scientific results to the Cluster community. This paper describes the process of translating the scientific requirements of the Cluster mission into a data-processing system supporting the mission via the definition of an appropriate operational scenario. In particular, the process of negotiation between the PIs and ESOC to command the spacecraft is mediated by the Joint Science Operations Centre (JSOC) and finalised by the Cluster Mission Planning System (CMPS) while the return of the data to the Cluster community is actuated by the Cluster Data Disposition System (CDDS). The Cluster Mission Control System (CMCS) provides the interface between these two systems and the spacecraft. These elements constitute the Cluster Data-Processing System (CDPS).  相似文献   

10.
ARTEMIS Mission Design   总被引:2,自引:0,他引:2  
The ARTEMIS mission takes two of the five THEMIS spacecraft beyond their prime mission objectives and reuses them to study the Moon and the lunar space environment. Although the spacecraft and fuel resources were tailored to space observations from Earth orbit, sufficient fuel margins, spacecraft capability, and operational flexibility were present that with a circuitous, ballistic, constrained-thrust trajectory, new scientific information could be gleaned from the instruments near the Moon and in lunar orbit. We discuss the challenges of ARTEMIS trajectory design and describe its current implementation to address both heliophysics and planetary science objectives. In particular, we explain the challenges imposed by the constraints of the orbiting hardware and describe the trajectory solutions found in prolonged ballistic flight paths that include multiple lunar approaches, lunar flybys, low-energy trajectory segments, lunar Lissajous orbits, and low-lunar-periapse orbits. We conclude with a discussion of the risks that we took to enable the development and implementation of ARTEMIS.  相似文献   

11.
The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20–70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of a P =(8.74±1.33)×10?10 m/s2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is still being investigated. Recently new Pioneer 10 and 11 radio-metric Doppler and flight telemetry data became available. The newly available Doppler data set is much larger when compared to the data used in previous investigations and is the primary source for new investigation of the anomaly. In addition, the flight telemetry files, original project documentation, and newly developed software tools are now used to reconstruct the engineering history of spacecraft. With the help of this information, a thermal model of the Pioneers was developed to study possible contribution of thermal recoil force acting on the spacecraft. The goal of the ongoing efforts is to evaluate the effect of on-board systems on the spacecrafts’ trajectories and possibly identify the nature of this anomaly. Techniques developed for the investigation of the Pioneer anomaly are applicable to the New Horizons mission. Analysis shows that anisotropic thermal radiation from on-board sources will accelerate this spacecraft by ~41×10?10 m/s2. We discuss the lessons learned from the study of the Pioneer anomaly for the New Horizons spacecraft.  相似文献   

12.
随着机载航空电子设备的快速发展,使得传统地面系统承担的发动机诊断任务可以在线实现。实时数据的使用,可以在线监测发动机性能退化,减少故障检测和隔离的潜伏期,增加间歇性故障的检测率。为此,提出并设计了一种用于航空发动机气路故障检测和隔离、健康监测及参数估计的在线综合诊断结构。基于xPC Target 原理搭建了硬件实时仿真平台,对该结构进行了仿真验证。仿真结果表明,该结构中的机载自适应模型对发动机健康参数、可测参数和不可测参数的估计误差在0.5%以内;气路故障诊断系统采用实时数据,可以更早地检测和隔离包含间歇性故障在内的各种气路故障。  相似文献   

13.
《中国航空学报》2016,(6):1695-1709
Inertial navigation system/visual navigation system (INS/VNS) integrated navigation is a commonly used autonomous navigation method for planetary rovers. Since visual measurements are related to the previous and current state vectors (position and attitude) of planetary rovers, the performance of the Kalman filter (KF) will be challenged by the time-correlation problem. A state augmentation method, which augments the previous state value to the state vector, is commonly used when dealing with this problem. However, the augmenting of state dimensions will result in an increase in computation load. In this paper, a state dimension reduced INS/VNS integrated nav-igation method based on coordinates of feature points is presented that utilizes the information obtained through INS/VNS integrated navigation at a previous moment to overcome the time rel-evance problem and reduce the dimensions of the state vector. Equations of extended Kalman filter (EKF) are used to demonstrate the equivalence of calculated results between the proposed method and traditional state augmented methods. Results of simulation and experimentation indicate that this method has less computational load but similar accuracy when compared with traditional methods.  相似文献   

14.
The High Energy Telescope for STEREO   总被引:1,自引:0,他引:1  
The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these instruments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to ~13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to ~100 MeV/n, as are penetrating He. For stopping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range ~0.7–6 MeV.  相似文献   

15.
16.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   

17.
Autonomous and safe landing spacecraft on moon and planetary bodies is a rather difficult and risky task. Accurate relative navigation between the spacecraft and the planetary surface is essential, together with the autonomous hazard detection and avoidance. This paper describes the vision-aided inertial navigation (VAIN) scheme to meet the pinpoint landing requirement of the next generation planetary lander. Images of distinctive surface feature called feature points/landmarks are detected and tracked autonomously to improve the performance of inertial navigation. Landmark image information derived from optical navigation camera and the spacecraft state information sensed by IMU (Inertial Measurement Unit) are integrated in extended Kalman filter algorithm. The validity of the proposed navigation scheme is confirmed by computer simulation.  相似文献   

18.
A broad, international, cooperative effort is under way to study and develop quantitative understanding of the fundamental electrodynamic processes in the solar-terrestrial environment. Japan, Europe, Russia, the United States, and other countries are providing spacecraft to be placed in key regions with the aim of utilizing coordinated, multipoint spaceflight measurements, ground-based observations, and theory to study the global energy budget of geospace. The U.S. contribution began in the late 1970's as the OPEN program (Origin of Plasmas in Earth's Neighborhood) and was reconstituted in the 1980's as the Global Geospace Science (GGS) program. The international effort, known in the U. S. as the International Solar Terrestrial Physics program (ISTP), began with the launch of the Japanese GEOTAIL in 1992, and will continue with the U. S. spacecraft WIND and POLAR in 1994–1995, and the European four-spacecraft Cluster fleet and its Solar and Heliospheric Observatory (SOHO) in 1995. Russia will launch its Interball set of four spacecraft in 1995. The Inter-Agency Consultative Group (IACG) is promoting the coordination of the spacecraft observations by means of scientific campaigns aimed at addressing scientific questions that can only be answered by observations from the multiple spacecraft. The Solar Terrestrial Energy Program (STEP) is coordinating the involvement of the broad scientific community and especially the correlative ground observations.  相似文献   

19.
The planned radio science investigations during the Voyager missions to the outer planets involve: (1) the use of the radio links to and from the spacecraft for occultation measurements of planetary and satellite atmospheres and ionospheres, the rings of Saturn, the solar corona, and the general-relativistic time delay for radiowave propagation through the Sun's gravity field; (2) radio link measurements of true or apparent spacecraft motion caused by the gravity fields of the planets, the masses of their larger satellites, and characteristics of the interplanetary medium; and (3) related measurements which could provide results in other areas, including the possible detection of long-wavelength gravitational radiation propagating through the Solar System. The measurements will be used to study: atmospheric and ionospheric structure, constituents, and dynamics; the sizes, radial distribution, total mass, and other characteristics of the particles in the rings of Saturn; interior models for the major planets and the mean density and bulk composition of a number of their satellites; the plasma density and dynamics of the solar corona and interplanetary medium; and certain fundamental questions involving gravitation and relativity. The instrumentation for these experiments is the same ground-based and spacecraft radio systems as will be used for tracking and communicating with the Voyager spacecraft, although several important features of these systems have been provided primarily for the radio science investigations.  相似文献   

20.
The Juno Magnetic Field Investigation   总被引:2,自引:0,他引:2  
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ~20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = \(1.6 \times 10^{6}\mbox{ nT}\) per axis) with a resolution of ~0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号