首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Small satellite's role in future hyperspectral Earth observation missions   总被引:1,自引:0,他引:1  
M. Guelman  F. Ortenberg   《Acta Astronautica》2009,64(11-12):1252-1263
Along with various advanced satellite onboard sensors, an important place in the near future will belong to hyperspectral instruments, considered as suitable for different scientific, commercial and military missions. As was demonstrated over the last decade, hyperspectral Earth observations can be provided by small satellites at considerably lower costs and shorter timescales, even though with some limitations on resolution, spectral response, and data rate. In this work the requirements on small satellites with imaging hyperspectral sensors are studied. Physical and technological limitations of hyperspectral imagers are considered. A mathematical model of a small satellite with a hyperspectral imaging spectrometer system is developed. The ability of the small satellites of different subclasses (micro- and mini-) to obtain hyperspectral images with a given resolution and quality is examined. As a result of the feasibility analysis, the constraints on the main technical parameters of hyperspectral instruments suitable for application onboard the small satellites are outlined. Comparison of the data for designed and planned instruments with simulation results validates the presented approach to the estimation of the small satellite size limitations. Presented analysis was carried out for sensors with conventional filled aperture optics.  相似文献   

2.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

3.
In February 1997 the Chief of Naval Research chartered the Naval Space Science and Technology (S&T) Program Office, at the Office of Naval Research, to operate as the central point of contact for the Department of the Navy's (DON's) S&T activities in space. The Office was chartered to enhance the DON's space efforts through interdepartmental integration and linkage with external Department of Defense (DOD) commands and government agencies. The Office's goal is to optimize a plan for S&T coherency, synergy, and relevancy to effect technology transition to the DON's Systems Commands or Program Executive Offices (PEO's) while developing an investment strategy that accommodates and leverages the commonality of commercial and consumer thrust areas and products.

This paper will focus on the “Flagship” Naval Space S&T Program, the Naval EarthMap Observer (NEMO) Program, as one example of how the Office is executing its mission. It will discuss how, through NEMO, the Navy is able to leverage commercial industry and other US government agency requirements and resources to meet unique Naval needs. Finally, the paper will discuss the specifics of NEMO, the Navy's roles and responsibilities and how the Navy will use NEMO in its mission to characterize the littoral regions of the world.

Through the NEMO satellite system, the Navy will develop a large hyperspectral imagery database which will be used to characterize and model the littoral regions of the world. NEMO will provide images using its Coastal Ocean Imaging Spectrometer (COIS) Instrument along with a co-registered 5m Panchromatic Imager (PIC). With 210 spectral channels over a bandpass of 0.4 to 2.5μm and very high signal-to-noise ratio (SNR), the COIS instrument is optimized for the low reflectance environment of the littoral region. COIS will image over a 30km wide swath with a 60m Ground Sample Distance (GSD), and can image at a 30m GSD with ground motion compensation. A 10:30am, sun-synchronous circular orbit of 605km enables continuous repeat coverage of the whole earth. A unique aspect of the system is the spectral feature extraction and data compression software algorithm developed by the Naval Research Laboratory (NRL) called the Optical Real-Time Spectral Identification System (ORA-SIS). ORASIS employs a parallel, adaptive hyperspectral method for real-time scene characterization, data reduction, background suppression, and target recognition. The use of ORASIS is essential for management of the massive amounts of data expected from the NEMO HSI system, and for development of Naval products. Specific Naval products include bathymetry, water clarity, bottom type, atmospheric visibility, bioluminescence, beach characterization, under-water hazards, total column atmospheric water vapor, and detection and mapping of sub-visible cirrus. Demonstrations of timely downlinks of real-time hyperspectral imagery data to the Naval warfighter are also being developed. The NEMO satellite is planned for launch in mid-2000 followed by an operational period of 3 to 5 years.  相似文献   


4.
In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role. This payload type is considered world-wide within different future planning.Our team has now successfully finalized the Phase B study for the advanced hyperspectral mission EnMAP (Environmental Mapping and Analysis Programme), Germans next optical satellite being scheduled for launch in 2012. GFZ in Potsdam has the scientific lead on EnMAP, Kayser-Threde in Munich is the industrial prime.The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 and 2450 nm with a ground resolution of 30 m×30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modeling and optimization process on their results. The performance of the hyperspectral instrument allows for a detailed monitoring, characterization and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities.  相似文献   

5.
不透水面是评估城市化进程和评价城市环境的重要参考指标,研究城市不透水面的空间覆盖程度对城市生态环境保护、宜居城市建设具有重要意义。本文以“珠海一号”高光谱影像为数据源、珠海市陆域为研究区域,选取支持向量机和随机森林机器学习算法,结合光谱特征,实现城市不透水面信息提取。结果表明:使用“珠海一号”高光谱数据提取不透水面可行性较强,且支持向量机算法更适用于“珠海一号”不透水面提取,总体精度和Kappa系数分别达到92.4%、0.78;基于“珠海一号”高光谱数据进行城市不透水面提取,可为城市规划建设、分析城市土地扩张、评估城市灾害风险提供可靠理论依据和数据支撑。  相似文献   

6.
陈丽  贾源源 《遥测遥控》2023,44(2):92-99
珠海一号高光谱卫星具有高空间、高光谱、高时间分辨率等特点,有效推动了高光谱遥感数据在农林环境、自然资源探测等领域的广泛应用,其中高精准的云检测是遥感数据预处理的关键步骤。如何对高光谱图像有效特征提取并克服传统云检测方法特征复杂、算法参数多、计算量大、鲁棒性差等缺陷,是高光谱云检测研究的关键问题。为此,提出了一种多尺度特征融合的U型结构网络,模型首先利用残差模块进行特征编码,并将编码进行多尺度融合,在网络的跳跃连接处引入了坐标注意力机制提取有用信息,最后通过残差解码得到输出结果。实验前首先利用主成分分析降维,将高光谱数据重构为4维影像数据,然后通过数据标注与数据增强,建立珠海一号高光谱影像云检测数据集。采用了38-Cloud云数据集训练初始网络参数,随后利用构建的数据集进行迁移学习。实验结果表明,对于所建立的珠海一号高光谱云检测数据集,所提方法的像素准确率达到92.28%,可以实现高精度的高光谱遥感影像云检测。  相似文献   

7.
岩性识别和分类是地质学、资源勘查等不可或缺的环节,高光谱遥感的兴起为岩性识别提供新的思路。利用机器学习挖掘岩石高光谱图像中的信息从而准确识别岩性,这具有重要的应用价值。目前用机器学习的方法实现岩石的高光谱影像分类研究中,缺少对空间和光谱信息的充分利用,因此本文使用了一种加入注意力机制的三维卷积残差网络结构,能够有效提取岩石高光谱图像的空间、光谱特征以及空谱联合特征。本实验利用无人机搭载高光谱传感器采集了10种不同类型的岩石样本影像,应用该算法对岩石高光谱图像进行分类。实验结果表明:该算法与传统机器学习算法SVM、RF和深度学习算法ResNet、3D CNN和SSRN相比具有更高的精度。  相似文献   

8.
康倩  于晋  林军 《航天器工程》2011,(2):97-101
环境与灾害监测预报小卫星星座A星(简称环境-1A卫星,HJ-1A)上搭载的高光谱成像仪(HSI)是我国第一个对地成像的干涉成像光谱仪,具有多谱段、高光谱分辨率的优点.针对高光谱成像仪的特点,设计了星载高光谱成像仪数据地面预处理系统.该系统由产品生产、质量检测和定标处理单元组成,集成了高光谱成像仪数据完整性处理、背景处理...  相似文献   

9.
Space assets have a unique opportunity to play a more active role in global resource management. There is a clear need to develop resource management tools in a global framework. Illegal, Unregulated and Unreported (IUU) fishing is placing pressure on the health and size of fishing stocks around the world. Earth observation systems can provide fishery management organizations with cost effective monitoring of large swaths of ocean. Project Catch is a fisheries management project based upon the complimentary, but independent Catch-VMS and Catch-GIS systems. Catch-VMS is a Vessel Monitoring System with increased fidelity over existing offerings. Catch-GIS is a Geographical Information System that combines VMS information with existing Earth Observation data and other data sources to identify Illegal, Unregulated and Unreported (IUU) fishing. Project Catch was undertaken by 19 Masters students from the 2010 class of the International Space University. In this paper, the space-based system architecture of Project Catch is presented and analyzed. The rationale for the creation of the system, as well as the engineering trade-off studies in its creation, are discussed. The Catch-VMS proposal was envisaged in order to address two specific problems: (1) the expansion of illegal fishing to high-latitude regions where existing satellite systems coverage is an issue and (2) the lack of coverage in remote oceanic regions due to reliance on coastal-based monitoring. Catch-VMS utilizes ship-borne transponders and hosted-payload receivers on a Global Navigation Satellite System in order to monitor the position and activity of compliant fishing vessels. Coverage is global and continuous with multiple satellites in view providing positional verification through multilateration techniques. The second part of the paper briefly describes the Catch-GIS system and investigates its cost of implementation.  相似文献   

10.
董瑛  尤政  郝云彩 《宇航学报》2002,23(4):12-14
基于空间线性可变滤波器的成像光谱仪SVFIS是为纳型卫星设计的高光谱遥感系统,它的最大优点是结构简单,因而机械稳定性和热稳定性非常高,特别适合在航天环境下使用。本文简要介绍了航天高光谱遥感和成像光谱仪,重点介绍SVFIS的系统结构并阐明它的工作原理。SVFIS的数据具有冗余性和延时性的特点,虽然有它不利的一面,但其影响程度依赖于系统设计。由于SVFIS数据中包含着地势起伏、目标运动和平台姿态变化的信息,为研究这些信息,我们对像面进行了特殊的设计,这是SVFIS的另一显著特点。  相似文献   

11.
高光谱遥感成像链路中各个环节产生的系统误差会降低数据质量(quality),从而削弱高光谱数据的应用潜力。为了消除高光谱辐亮度数据中的系统残余误差,以色散推扫型高光谱遥感系统为例,提出了基于成像链路的系统残余误差校正流程。首先,从成像链路出发,在不同环节分析系统残余误差的产生原因及机理;然后,通过分析检测及校正算法对数据质量的影响,以及误差项之间的内在联系,设计了一种系统残余误差校正流程;最后,以PHI高光谱数据作为数据源对提出的校正流程进行实验验证。结果表明:校正后的图像可视性增强;信噪比显著提高,最大提升值为91.9%;反射率数据中的过校正现象得到有效消除。利用该校正流程能够较好的消除数据中的系统误差,提高图像数据质量以及后续应用处理能力。  相似文献   

12.
针对高光谱图像分类问题,提出了一种基于支持向量机的利用组合特征对高光谱图像进行分类的算法,组合特征综合了高光谱图像的光谱域和空域信息。针对图像的高维数据特性,利用最大噪声分量方法进行特征提取,对得到的主分量图像,采用虚拟维数估计算法来确定需要保留的主分量数目,并用数学形态学操作用保留的主分量图像中提取目标的形态信息。根据得到的空域特征并结合原始光谱域特征,构造用于分类的组合特征矢量。而且采用了支持向量机,利用了其支持小样本、效率高的优点。高光谱数据实验表明,本文提出的方法和单独使用谱域或空域信息进行分类相比,具有一定的优越性。
  相似文献   

13.
Thomas M  Walter MR 《Astrobiology》2002,2(3):335-351
An integrated analysis of both airborne and field short-wave infrared hyperspectral measurements was used in conjunction with conventional field mapping techniques to map hydrothermal alteration in the central portion of the Mount Painter Inlier in the Flinders Ranges, South Australia. The airborne hyperspectral data show the spatial distribution of spectrally distinct minerals occurring as primary minerals and as weathering and alteration products. Field spectral measurements, taken with a portable infrared mineral analyzer spectrometer and supported by thin-section analyses, were used to verify the mineral maps and enhance the level of information obtainable from the airborne data. Hydrothermal alteration zones were identified and mapped separately from the background weathering signals. A main zone of alteration, coinciding with the Paralana Fault zone, was recognized, and found to contain kaolinite, muscovite, biotite, and K-feldspar. A small spectral variation associated with a ring-like feature around Mount Painter was tentatively determined to be halloysite and interpreted to represent a separate hydrothermal fluid and fluid source, and probably a separate system. The older parts of the alteration system are tentatively dated as Permo-Carboniferous. The remote sensing of alteration at Mount Painter confirms that hyperspectral imaging techniques can produce accurate mineralogical maps with significant details that can be used to identify and map hydrothermal activity. Application of hyperspectral surveys such as that conducted at Mount Painter would be likely to provide similar detail about putative hydrothermal deposits on Mars.  相似文献   

14.
支持向量数据描述方法在高光谱图像小异常目标检测中具有较好的检测性能,但是待检异常的几何形状受到约束和背景的选择具有盲目性影响检测效果,且检测需要对整幅图像进行遍历导致计算量大。提出邻域聚类分割和支持向量数据描述相结合的异常检测方法,首先利用邻域聚类方法分割图像,将几何尺寸小的分割块作为潜在异常目标;其次选择与潜在异常的形状和大小相适应的背景窗进行背景像元收集;最后采用SVDD方法从潜在异常中快速且准确地检测出异常目标。对HYMAP图像的实验结果表明,该算法提高了复杂地物背景下异常的检测性能,降低了SVDD用于高光谱图像异常检测的计算量。  相似文献   

15.
利用中国环境减灾-1A(HJ-1A)卫星高光谱数据开展减灾应用研究,可提高灾害预警监测能力,提高灾害预警监测精度,拓展国产星载高光谱数据应用的广度和深度。文章简要介绍了HJ-1A高光谱数据的主要特征,阐述了高光谱灾害监测的原理,初步开展了该数据在减灾领域中的应用研究,并展望了HJ-1A高光谱数据在区域土壤有机碳估算等其...  相似文献   

16.
沈毅  张敏  张淼 《宇航学报》2012,33(4):471-477
为了充分降低高光谱图像中的噪声以获得高精度的分类结果,本文结合小波阈值降噪(WTD)和经验模态分解(EMD)的优点,提出了一种基于小波阈值降噪-经验模态分解的高精度支持向量机(SVM)高光谱图像分类算法(WTD-EMD-SVM)。首先对高光谱图像进行小波阈值降噪,除去高光谱数据中的高频噪声;然后再对高光谱图像进行EMD,获得含有高光谱数据本质特征的内固模态函数(IMF)和含有低频噪声的残差;最后采用内固模态函数重构高光谱图像,并对高光谱图像进行SVM分类。将其应用到AVIRIS数据92AV3C,仿真结果表明该算法不仅提高了高光谱图像分类精度,同时可减少支持向量数目,以提高高光谱图像分类速度。  相似文献   

17.
Upcoming space missions utilizing hyperspectral or other high-resolution sensors will generate a vast amount of data in orbit. The average communication duration between a spacecraft in low Earth orbit (LEO) to a dedicated ground station is short and in addition, due to the high amount of data to be transferred at link times, a high-performance communication system on board of the satellite is indispensable.A solution that provides longer acquisition times with the ground station is to employ a high data-rate inter-satellite link to a geostationary relay satellite, which requires a flat, compact, steerable, light-weight yet robust antenna. Such an antenna system (antenna module plus pointing module) was developed for S-Band at the Institute of Astronautics (Technische Universität München), in cooperation with German space companies, research institutes and the German Aerospace Center (DLR). Its successful operation via the geostationary relay satellite Artemis was demonstrated in cooperation with ESA in 2007.This paper describes the evaluation of an antenna system in the Ka-Band, as a successor to be developed in the next two years for high data rates and the various applications of such an antenna system.  相似文献   

18.
S. Mishra  R. Gupta  A.S. Ganeshan   《Acta Astronautica》2009,65(7-8):1149-1157
The estimation and separation of ephemeris and clock errors is an integral part of a SBAS (Space Based Augmentation System). Generally, the global solution is based on the full state approach for satellite errors (ephemeris and clock) and station errors, using a large least square estimator; or the other way is to sequentially estimate the ephemeris and clock through a Kalman filter, using a complex model of the satellite dynamics. In this paper, the estimation and separation of ephemeris and clock errors is addressed through a unique approach of combining both the methods. The algorithm employs measurements, which are pre-processed for various errors and known biases. A single difference technique is used to separately estimate the ephemeris and clock components. The ephemeris Kalman filter uses a priori information of ephemeris errors along with measurements through a minimum variance estimator to provide ephemeris error estimate. A similar approach is adopted in the clock error estimation process, to provide clock and clock rate estimates. The algorithm results are presented using simulated data for known errors in ephemeris/clock and subsequent retrieval. This algorithm estimates these errors as corrections to the broadcast Global Positioning System (GPS) navigation data, required by a SBAS user for accuracy improvement.  相似文献   

19.
为了提升火箭总体设计能力,通过集成化的设计工具实现设计方法的统一和规范,解决总体设计流程通过文档传递速度慢、缺乏统一接口和设计工具、设计效率低的痛点问题,提出基于数据驱动的运载火箭总体协同设计方法,并开发软件实现应用。遵循基于模型的系统工程(Model Based System Engineering,MBSE)理念,通过制定专业间接口数据规范,构建总体多专业协同设计数据物料清单(Bill of Materials, BOM),形成统一数据接口,围绕统一数据BOM模型开展协同设计工作,成功应用于总体协同设计工作中的多个场景,实现设计过程数据同源、状态变化同知。基于数据的总体协同设计方法,设计效率显著提升,设计精度与传统设计方法整体相当,局部更优。  相似文献   

20.
The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号